

Manual


**Distributed network components protection & control
EuroProt+/DTIVA**

E10-FEEDER

VERSION INFORMATION

NAME	DOCUMENT ID	VERSION	DATE
EuroProt+ DTIVA type	PP-13-21885	1.1	2020-02-21
EuroProt+ Hardware description	PP-13-19958	2.1	2024-09-17
Definite time undervoltage protection function	PP-13-21403	1.1	2017-01-11
Loss-of-load (undercurrent) protection function	VERSION 1.0	1.0	2012-03-29
Three-phase overcurrent protection	PP-13-21408	2.4	2022-08-22
Residual overcurrent protection	PP-13-20320	1.3	2022-08-22
Definite time overvoltage protection function	PP-13-21400	1.2	2017-01-11
Residual definite time overvoltage protection function	VERSION 1.0	1.0	2011-06-27
Capacitor unbalance protection for blocks in bridge connection function	PP-13-22987	2.0	2024-07-31
Capacitor unbalance protection for blocks in double star connection function	PP-13-22986	2.0	2024-07-31
Capacitor unbalance protection for blocks in double star connection (Version "U") function	PP-13-22989	2.0	2024-07-31
Capacitor unbalance protection for blocks in double delta connection	PP-13-22988	2.0	2024-07-31
Capacitor overvoltage protection function	PP-13-21727	2.0	2024-07-31
Phase-Selective Trip Logic	PP-13-21531	2.0	2019-03-12
Circuit breaker wear monitoring	PP-13-21310	1.1	2016-09-06
Circuit Breaker control	PP-13-21877	2.0	2019-04-01
Disconnecter control	PP-13-20396	2.0	2019-04-01
Ethernet Links function	PP-13-21870	1.0	2019-02-19
Trip Circuit Supervision (TCS)	PP-13-21875	1.2	2019-08-09
Application of high-speed TRIP contacts	PP-13-21592	1.1	2017-10-02
Dead Line Detection Function	PP-13-22522	2.0	2022-03-04
Voltage transformer supervision and dead line detection	VERSION 1.1	1.1	2011-10-25
Current unbalance function	PP-13-22163	2.0	2020-06-25
Current input function block setting guide	VERSION 1.1	1.0	2015-01-29
Voltage input function block setting guide	VERSION 1.0	1.0	2015-01-29
Line measurement			
Frequency measurement			
Voltage measurement	PP-13-21168	2.3	2021-09-02
Current measurement			
Disturbance recorder	PP-13-20368	3.2	2023-10-09
Average and maximum measurement function	PP-11-20109	1.0	2013-09-27
Metering function	PP-13-22238	2.1	2022-10-19
Trip value recorder function	PP-13-20947	2.1	2020-12-10
Voltage measurement selection function	VERSION 1.0	1.0	2013-02-06
AIC current input function	PP-13-21392	1.0	2017-01-03
Remote I/O (RIO) server description	PP-13-22346	1.0	2021-06-02
Technical notes on EOB interoperability	-	1.0	2011-06-27
Maintenance guide	PP-13-226045	2.0	2022-11-18
RTD temperature input function	PP-13-21394	1.0	2017-01-03
EP+ Installation manual	PP-06-22516	1.0	2022-03-09

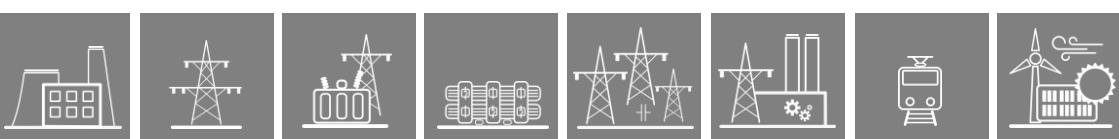


Table of Contents

1. Introduction	5
1.1. Application.....	5
1.1.1. General features	5
1.2. Pre-defined configuration variants	6
1.3. Hardware configuration	7
1.3.1. The applied hardware modules	7
1.3.2. Meeting the device.....	8
1.3.3. System design.....	9
1.3.4. CPU and COM module	10
1.3.5. Device housings	30
1.3.6. Human-Machine Interface (HMI) module	32
1.3.7. Current input module	39
1.3.8. Voltage input module.....	44
1.3.9. Binary input module.....	46
1.3.10. Signaling module	49
1.3.11. Tripping module.....	52
1.3.12. RTD input module.....	73
1.3.13. Analog input module (AI)	75
1.3.14. Analog output module (ATO)	77
1.3.15. Sensor input module.....	79
1.3.16. INJ module.....	81
1.3.17. Generator protection modules	82
1.3.18. Power supply module	85
1.3.19. Sampling synchronization module	89
1.3.20. Mixed function modules	90
1.3.21. General data.....	100
1.3.22. Mechanical data.....	102
1.3.23. Mounting methods.....	105
1.3.24. Product availability (special and obsolete modules)	125
1.3.25. Remote I/O (RIO) server description.....	130
1.3.26. Technical notes on EOB interoperability.....	139
1.3.27. EP+ Installation manual	142
2. Function and I/O listing.....	150
3. Software configuration	152
3.1. Protection functions.....	152
3.1.1. Definite time undervoltage protection function	153
3.1.2. Loss-of-load (undercurrent) protection function.....	161
3.1.3. Three-phase time overcurrent protection	164
3.1.4. Residual overcurrent protection function.....	180
3.1.5. Definite time overvoltage protection function	189
3.1.6. Residual definite time overvoltage protection function	198
3.1.7. Capacitor unbalance protection for blocks in bridge connection.....	205
3.1.8. Capacitor unbalance protection for blocks in double star connection	222
3.1.9. Capacitor unbalance protection for blocks in double star connection (Version “U”).....	236
3.1.10. Capacitor unbalance protection for blocks in double delta connection	246

3.1.11. Capacitor overvoltage protection function.....	263
3.2. Control & supervision functions.....	269
3.2.1. Phase-Selective Trip Logic	269
3.2.2. Circuit breaker wear monitoring function.....	273
3.2.3. Circuit breaker control function block.....	278
3.2.4. Disconnector control function.....	284
3.2.5. Ethernet Links function.....	291
3.2.6. Trip Circuit Supervision	294
3.2.7. Dead Line Detection Function	301
3.2.8. Voltage transformer supervision function.....	310
3.2.9. Current unbalance function.....	325
3.3. Measuring functions	331
3.3.1. Current input function	333
3.3.2. AIC current input function.....	338
3.3.3. Voltage input function	340
3.3.4. Line and frequency measurement functions	348
3.3.5. Average and maximum measurement function.....	358
3.3.6. Metering	360
3.3.7. Voltage selection function block.....	366
3.3.8. Trip Value Recorder	368
3.3.9. RTD temperature input function.....	371
3.4. Disturbance recorder function.....	374
3.4.1. Operation principle.....	374
3.4.2. Disturbance recorder function overview	376
3.5. Event recorder	379
4. Maintenance guide for EuroProt+ devices	380
4.1. Foreword	380
4.2. Safety precautions	380
4.2.1. General guidelines for a scheduled maintenance of EP+ devices	381
4.3. Power supply maintenance	382
4.4. Elements and Batteries	384
5. TRIP contact assignment.....	385
6. LED assignment.....	386

1. Introduction

The **DTIVA** product type is a member of the **EuroProt+** product line, made by Protecta Co. Ltd. The **EuroProt+** complex protection in respect of hardware and software is a modular device. The modules are assembled and configured according to the requirements, and then the software determines the functions. This manual describes the **DTIVA** product type.

1.1. Application

The **DTIVA** products are configured to protect, control and supervise elements of the utility and industrial distribution systems, including radial, looped and meshed distribution networks.

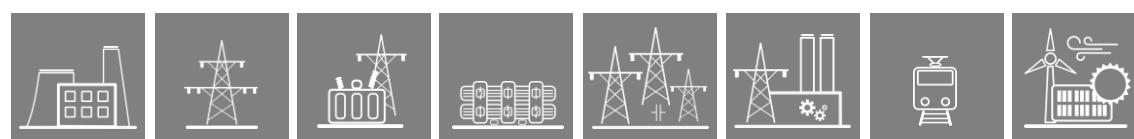
The main application fields of the **DTIVA** type are the not solidly grounded radial networks. Here the application of Petersen coils or grounding resistances results relatively low currents in case of single phase-to-ground faults. The majority of the protections are based on current measurements only, but the application of distributed generation or loops in the network topology require additional voltage measurement and directional protection functions.

The relays of this type support double breaker terminals such as breaker and a half or ring bus topology.

The main protection functions of the **DTIVA** type include directional and non-directional overcurrent protections, voltage-based protections and frequency-based protections

The MV automatic reclosing function (wherever present) provides multi-shot autoreclosing with a synchro-check feature. The dead times and shot numbers can be set individually for earth faults and phase faults.

Additionally, the **DTIVA** product type includes a variety of versatile protection functions, such as high-speed distance protection with five independent protection zones and line differential protection.

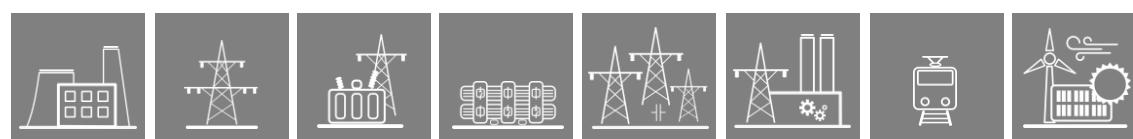

More specialized applications, such as MV motor protection and capacitor bank protection, are also covered in this type by dedicated configuration variants.

Because of the implemented control, measuring and monitoring function, the IEDs can also be used as a bay control unit.

The **EuroCAP configuration tool**, which is available free of charge, offers a user-friendly and flexible application for protection, control and measurement functions to ensure that the IED-EP+ devices are fully customizable.

1.1.1. General features

- Native IEC 61850 IED with Edition 2 compatibility
- Scalable hardware to adapt to different applications
- 84 HP or 42HP wide rack size (height: 3U)
- The pre-defined factory configuration can be customized to the user's specification with the powerful EuroCAP tool
- Flexible protection and control functionality to meet special customer requirements
- Advanced HMI functionality via color touchscreen and embedded WEB server, extended measuring, control and monitoring functions
- User configurable LCD user screens, which can display SLDs (Single Line Diagrams) with switchgear position indication and control as well as measuring values and several types of controllable objects.
- Various protection setting groups available
- Enhanced breaker monitoring and control


- High capacity disturbance recorder (DRE) and event logging (data is stored in non-volatile memory):
 - DRE for up to 32 analogue and 64 digital signal channels.
 - Event recorder can store more than 10,000 events.
- Several mounting methods: Rack; Flush mounting; Semi-flush mounting; Wall mounting; Wall-mounting with terminals; Flush mounting with IP54 rated cover.
- Wide range of communication protocols:
 - Ethernet-based communication: IEC61850; IEC60870-5-104; DNP3.0 TCP; Modbus TCP
 - Serial communication: DNP3.0; IEC60870-5-101/103; MODBUS, SPA
- The EuroProt+ family can handle several communication protocols simultaneously.
- Built-in self-monitoring to detect internal hardware or software errors
- Different time sources available: NTP server; Minute pulse; Legacy protocol master; IRIG-B000 or IRIG-B12X

1.2. Pre-defined configuration variants

The number and the functionality of the members of each product type is put together according to the application philosophy, keeping in mind the possible main usages. The available configurations of the DTIVA type are listed in the table below.

VARIANT	MAIN APPLICATION
E1-Feeder	Non-directional 3ph+lo overcurrent protection, control & automation
E2-Feeder	Non-directional three-phase, directional residual overcurrent protection, control & automation
E3-Feeder	Directional 3ph+lo overcurrent, over- undervoltage, frequency protection & autorecloser
E4-Feeder	MV distance protection, control & automation
E5-Feeder	Line differential protection, control & automation
E6-Feeder	Combined MV distance and line differential protection, control & automation
E7-Feeder	Motor protection
E8-Feeder	Frequency and over- undervoltage protection
E9-Feeder	Vectorjump, over- and underpower and frequency protection
E10-Feeder	Capacitor bank protection

Table 1-1 The members of the DTIVA type

1.3. Hardware configuration

The minimum number of inputs and outputs are listed in the Table below.

Hardware configuration	ANSI	E10-Feeder
Mounting		Op.
Panel instrument case		X
Current inputs		8
Voltage inputs		4 (op.)
Digital inputs		12
Digital outputs		8
Fast trip outputs		2

Table 3 The basic hardware configuration of the E10-Feeder_H configuration

The basic module arrangement of the E10-Feeder_H configuration is shown below. (Related to 42TE rack size.)

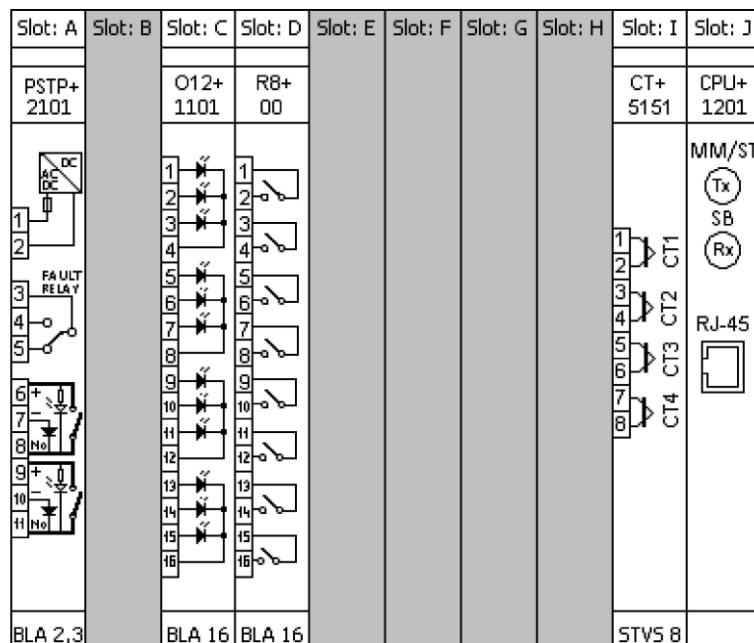


Figure 1 Basic module arrangement of the E10-Feeder_H configuration (42TE, rear view)

1.3.1. The applied hardware modules

The applied modules are listed in Table 4.

The technical specification of the device and that of the modules are described in the document "**Hardware description**".

Module identifier	Explanation
PSTP+ 2101	Power supply unit
O8+ 1101	Binary input module
R8+ 00	Signal relay output module
CT + 5151	Analog current input module
CPU+ 1201	Processing and communication module

Table 4 The applied modules of the E10-Feeder_H configuration

1.3.2. Meeting the device

The basic information for working with the ***EuroProt+*** devices are described in the document “***Quick start guide to the devices of the EuroProt+ product line***”.

Figure 2 The 42 inch rack of ***EuroProt+*** family

1.3.3. System design

The EuroProt+ protection device family is a scalable hardware platform to adapt to different applications. Data exchange is performed via a 16-bit high-speed digital non-multiplexed parallel bus with the help of a backplane module.

Each module is identified by its location and there is no difference between module slots in terms of functionality. The only restriction is the position of the CPU module because it is limited to the "CPU" position. The built-in self-supervisory function minimizes the risk of device malfunctions.

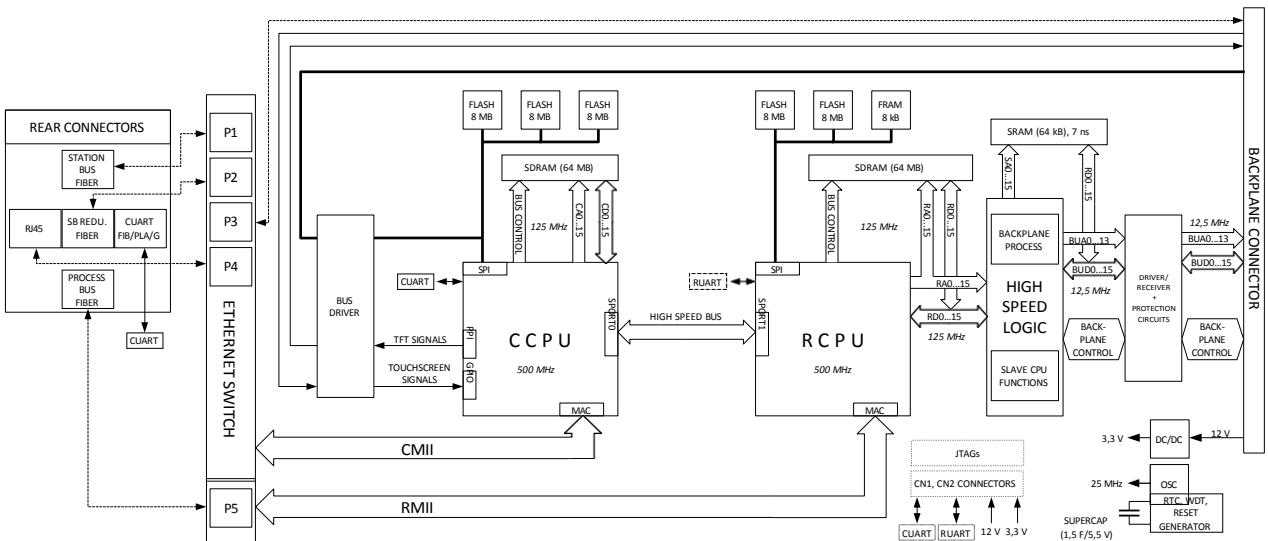
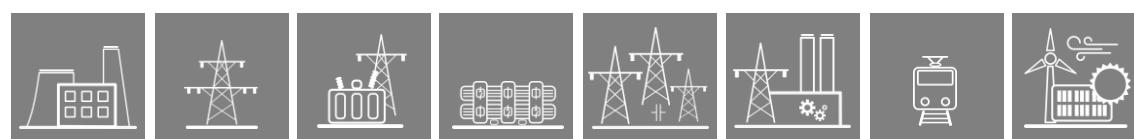



Figure 1-1 CPU block diagram

The backplane board itself is a passive board but it provides a 16-bit bus, power supply distribution, a two-wire interface (TWI) supporting module inventory management and module identification. It is designed to meet the requirements for high-speed digital buses and to comply with electromagnetic emission standards.

1.3.4. CPU and COM module

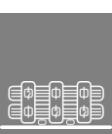
1.3.4.1. CPU+ module

The CPU module contains all the protection, control and communication functions of the EuroProt+ device. Dual 500 MHz high-performance Analog Devices Blackfin processors separate relay functions (RDSP) from communication and HMI functions (CDSP). Reliable communication between processors is performed via high-speed synchronous serial internal bus (SPORT).

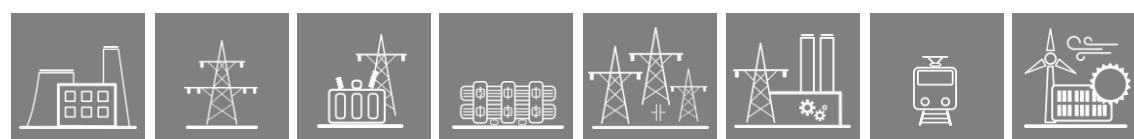
Each processor has its own operative memory such as SDRAM and flash memories for configuration, parameter and firmware storage. Both firmware are stored in a dedicated flash memory independent from the disturbance recorder and event storage.

The CDSP's operating system (uClinux) utilizes a robust JFFS flash file system, which enables fail-safe operation and the storage of disturbance record files, configuration and parameters.

The RDSP core runs at 500 MHz and its external bus speed is 125 MHz. The backplane data speed is limited to approx. 20 MHz, which is more than enough for module data throughput. An additional logic element (CPLD and SRAM) is used as a bridge between the RDSP and the backplane. The CPLD collects analogue samples from CT/VT modules and also controls signaling outputs and inputs.



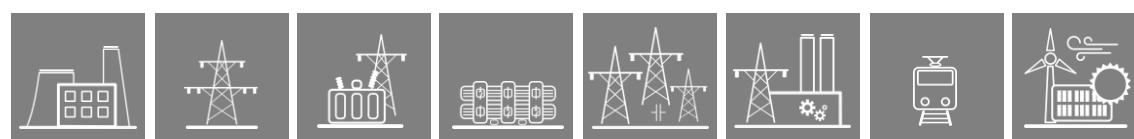
1.3.4.1.1. Fast start-up


After power-up the RDSP processor starts up with the previously saved configuration and parameters. Generally, the power-up procedure for the RDSP and relay functions takes only a few seconds. That is to say, it is ready to trip within this time. CDS's start-up procedure is longer because its operating system needs time to build its file system, initializing user applications such as HMI functions and the IEC61850 software stack.

1.3.4.1.2. HMI and communication tasks

- Embedded WEB-server:
 - Firmware upgrade possibility
 - Modification of user parameters
 - Events list and disturbance records
 - Password management
 - Online data measurement
 - Commands
 - Administrative tasks
- Front panel TFT display handling: the interactive menu set is available through the TFT and the touchscreen interface
- User keys: capacitive touch keys on front panel
- The built-in 5-port Ethernet switch allows EuroProt+ to connect to IP/Ethernet-based networks. The following Ethernet ports are available:
 - Station bus (100Base-FX Ethernet) SBW
 - Redundant station bus (100Base-FX Ethernet) SBR
 - Process bus (100Base-FX Ethernet)
 - EOB2 (Ethernet Over Board) or RJ-45 Ethernet user interface on front panel
 - Optional 10/100Base-T port via RJ-45 connector
- PRP/HSR seamless redundancy for Ethernet networking (100Base-FX Ethernet)
- Other communication:
 - RS422/RS485 interfaces (galvanic interface to support legacy or other serial protocols, ASIF)
 - Plastic or glass fiber interfaces to support legacy protocols, ASIF
 - Proprietary process bus communication controller on COM+ module
 - Telecommunication interfaces: G.703, IEEE C37.94

CPU VERSION	PRIMARY STATION BUS SBW	SECONDARY (REDUNDANT) STATION BUS SBR	LEGACY PORT/PROTOCOL	PROCESS BUS (FIBER) PB	SERVICE PORT ON FRONT PANEL EOB/ RJ45
CPU+/0007	-	-	-	-	+
CPU+/0091	-	-	-	+ SM SH	+
CPU+/0201*	-	+ RJ45	-	-	+
CPU+/0211*	-	+ RJ45	-	+ MM	+
CPU+/0281*	-	+ RJ45	-	+ SM LH	+
CPU+/0291*	-	+ RJ45	-	+ SM SH	+
CPU+/0301	-	-	+ POF	-	+
CPU+/0401	-	-	+ GS	-	+
CPU+/0501*	-	-	+ Galv. RS485/422	-	+
CPU+/1001	+ MM	-	-	-	+
CPU+/1004	+ MM	-	-	-	+
CPU+/1011	+ MM	-	-	+ MM	+
CPU+/1091	+ MM	-	-	+ SM SH	+
CPU+/1101*	+ MM	+ MM	-	-	+
CPU+/1111	+ MM	+ MM	-	+ MM	+
CPU+/1181	+ MM	+ MM	-	+ SM LH	+
CPU+/1191	+ MM	+ MM	-	+ SM SH	+
CPU+/1201*	+ MM	+ RJ45	-	-	+
CPU+/1202	+ MM	+ RJ45	-	-	+
CPU+/1211	+ MM	+ RJ45	-	+ MM	+
CPU+/1281	+ MM	+ RJ45	-	+ SM LH	+
CPU+/1291*	+ MM	+ RJ45	-	+ SM SH	+
CPU+/1292	+ MM	+ RJ45	-	+ SM SH	+
CPU+/1301	+ MM	-	+ POF	-	+
CPU+/1311	+ MM	-	+ POF	+ MM	+
CPU+/1331	+ MM	-	+ double POF	-	+
CPU+/1381	+ MM	-	+ POF	+ SM LH	+
CPU+/1391	+ MM	-	+ POF	+ SM SH	+
CPU+/1401	+ MM	-	+ GS	-	+
CPU+/1411	+ MM	-	+ GS	+ MM	+
CPU+/1481	+ MM	-	+ GS	+ SM LH	+
CPU+/1491	+ MM	-	+ GS	+ SM SH	+
CPU+/1501	+ MM	-	+ Galv. RS485/422	-	+
CPU+/1511	+ MM	-	+ Galv. RS485/422	+ MM	+


CPU VERSION	PRIMARY STATION BUS (FIBER) SBW	SECONDARY (REDUNDANT) STATION BUS SBR	LEGACY PORT/PROTOCOL	PROCESS BUS (FIBER) PB	SERVICE PORT ON FRONT PANEL EOB/ RJ45
CPU+/1581	+ MM	-	+ Galv. RS485/422	+ SM LH	+
CPU+/1611	+ MM	-	+ Galvanic sync	+ MM	+
CPU+/1681	+ MM	-	+ Galvanic sync	+ SM LH	+
CPU+/6001	+ MM/LC	-	-	-	+
CPU+/6004	+ MM/LC	-	-	-	+
CPU+/6093	+ MM/LC	-	-	+ SM SH	+
CPU+/6094	+ MM/LC	-	-	+ SM SH	+
CPU+/6601*	+ MM/LC	+ MM/LC	-	-	+
CPU+/9201	+ SM SH	+ RJ45	-	-	+
CPU+/9291	+ SM SH	+ RJ45	-	+ SM SH	+
CPU+/9501	+ SM SH	-	+ Galv. RS485/422	-	+
CPU+/9901	+ SM SH	+ SM SH	-	-	+
CPU+/A001*	+ MM/LC PRP/HSR	-	-	-	+
CPU+/A004	+ MM/LC PRP/HSR	-	-	-	+
CPU+/A011	+ MM/LC PRP/HSR	-	-	+ MM	+
CPU+/A081	+ MM/LC PRP/HSR	-	-	+ SM LH	+
CPU+/A091	+ MM/LC PRP/HSR	-	-	+ SM SH	+
CPU+/A094	+ MM/LC PRP/HSR	-	-	+ SM SH	+

*Note: the modules can be equipped with a different handle (narrower and made of aluminum, instead of the standard plastic), if the other modules of the device are equipped with top-screw terminals (see Chapter [20.2](#)). In these cases, a "T" letter appears on the label of the module (e.g. **CPU+/1201T**), but all other properties remain the same.

For legacy CPU cards (e.g. CPU+0001, ...) see [Product availability](#) chapter.

PRP/HSR option: A and F types can be ordered with PRP/HSR communication as sw option [Legend for CPU version table](#):

MM: Multimode with ST connector	GS: Glass with ST connector
MM/LC: Multimode with LC connector	SFP: Small Form-factor Pluggable connector
SM: Single mode with FC/PC connector	SB: Station Bus
LH: Long Haul with FC/PC connector	SBW: Station Bus Working
SH: Short Haul with FC/PC connector	SBR: Station Bus Redundant
POF: Plastic Optical Fiber with 1 mm fiber connector	PB: Proprietary Process Bus

CPU+ 0007	CPU+ 0091	CPU+ 0201	CPU+ 0211	CPU+ 0281	CPU+ 0291	CPU+ 0301	CPU+ 0401	CPU+ 0501	CPU+ 1001	CPU+ 1004
			RJ-45	RJ-45	RJ-45	POF	GS/ST Tx Rx ASIF	Tx+ Tx- GND Rx- Rx+ 1 2 3 4 5	MM/ST Tx SB Rx	MM/ST Tx SB Rx
			SM SH FCPC Tx PB Rx	MM/ST Tx PB Rx	SM LH FCPC Tx PB Rx	SM SH FCPC Tx PB Rx				
CPU+ 1011	CPU+ 1091	CPU+ 1101	CPU+ 1111	CPU+ 1181	CPU+ 1191	CPU+ 1201	CPU+ 1202	CPU+ 1211	CPU+ 1281	CPU+ 1291
MM/ST Tx SB Rx	MM/ST Tx SB Rx	MM/ST Tx SBW Rx	MM/ST Tx SBW Rx	MM/ST Tx SBW Rx	MM/ST Tx SBW Rx	MM/ST Tx SB Rx	MM/ST Tx SBW Rx	MM/ST Tx SB Rx	MM/ST Tx SB Rx	MM/ST Tx SB Rx
MM/ST Tx PB Rx	SM SH FCPC Tx PB Rx	MM/ST Tx SBR Rx	MM/ST Tx SBR Rx	MM/ST Tx PB Rx	SM LH FCPC Tx PB Rx	MM/ST Tx SBR Rx	RJ-45	RJ-45	MM/ST Tx PB Rx	SM LH FCPC Tx PB Rx
CPU+ 1292	CPU+ 1301	CPU+ 1311	CPU+ 1331	CPU+ 1381	CPU+ 1391	CPU+ 1401	CPU+ 1411	CPU+ 1481	CPU+ 1491	CPU+ 1501
MM/ST Tx SBW Rx	MM/ST Tx SB Rx	MM/ST Tx SB Rx	MM/ST Tx POF	MM/ST Tx POF1	MM/ST Tx POF	MM/ST Tx POF	GS/ST Tx ASIF Rx	GS/ST Tx ASIF Rx	MM/ST Tx SB Rx	MM/ST Tx SB Rx
RJ-45 Tx Rx	Tx Rx	POF	POF	Tx Rx	Tx Rx	Tx Rx	GS/ST Tx ASIF Rx	GS/ST Tx ASIF Rx	GS/ST Tx ASIF Rx	Tx+ Tx- GND Rx- Rx+ 1 2 3 4 5
SM SH FCPC Tx PB Rx		MM/ST Tx PB Rx	MM/ST Tx PB Rx	SM LH FCPC Tx PB Rx	SM SH FCPC Tx PB Rx		MM/ST Tx PB Rx	SM LH FCPC Tx PB Rx	SM SH FCPC Tx PB Rx	

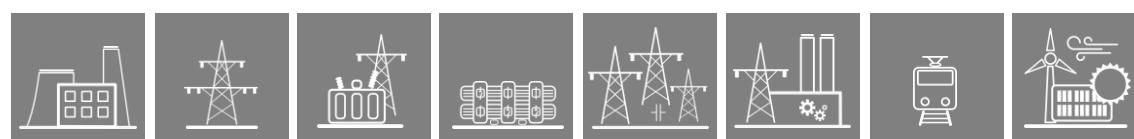
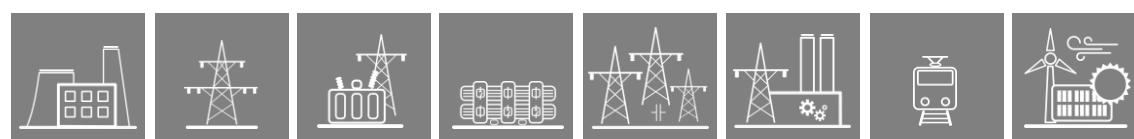



Figure 2-1 CPU versions

Interface types:

- 100Base-FX Ethernet:
 - MM/ST 1300 nm, 50/62.5/125 μ m connector, (up to 2 km) fiber
 - SM/FC 1550 nm, 9/125 μ m connector, (LH: long haul, up to 120 km)
 - SM/FC 1550 nm, 9/125 μ m connector, (SH: short haul, up to 50 km)
 - MM/LC 1300 nm, 50/62.5/125 μ m connector, (up to 2 km) fiber
- 10/100 Base-TX Ethernet: RJ-45-8/8
- Service port on HMI:
 - 10/100 Base-T Ethernet: RJ-45-8/8
 - EOB2 interface: attachable to the front panel by a proprietary magnetic connector; the connector box ends in a RJ-45 8/8 plug. It is 10Base-T full duplex interface, and it enables 10/100Base TX communication with service computers.
- ASIF: Asynchronous Serial Interface
 - plastic optical fiber (ASIF-POF)
 - glass with ST connector (ASIF-GS)
 - galvanic RS485/422 (ASIF-G)

1.3.4.2. COM modules

The COM+ modules are responsible for special communication tasks, these are the following:

- binary signal transmission
- line differential protection communication via Ethernet or telecommunication networks
- busbar differential protection communication
- multi-port Ethernet switch using MODBUS/TCP protocol for Remote I/O (RIO) servers

1.3.4.2.1. COM modules for binary signal transmission

MODULE TYPE	INTERFACE TYPE	NUMBER OF INTERFACES	UNIT WIDTH	APPLICATION
COM+/1801*	MM/ST 1300 nm, 50/62.5/125 µm and SM/FC 1550 nm, 9/125 µm connector, 100Base-FX Ethernet	2	4 HP	Line differential protection, binary signal transmission up to 2 km and up to 120 km
COM+/1901*	MM/ST 1300 nm, 50/62.5/125 µm and SM/FC 1550 nm, 9/125 µm connector, 100Base-FX Ethernet	2	4 HP	Line differential protection, binary signal transmission up to 2 km and up to 50 km
COM+/8882	SM/FC 1550 nm, 9/125 µm connector, 100Base-FX Ethernet	3	4 HP	3 direction binary signal transmission up to 120 km
COM+/9902	SM/FC 1550 nm, 9/125 µm connector, 100Base-FX Ethernet	2	4 HP	2 direction binary signal transmission up to 50 km
COM+/9992	SM/FC 1550 nm, 9/125 µm connector, 100Base-FX Ethernet	3	4 HP	3 direction binary signal transmission up to 50 km

*Note: the modules can be equipped with a different handle (narrower and made of aluminum, instead of the standard plastic), if the other modules of the device are equipped with top-screw terminals (see Chapter 20.2). In these cases, a "T" letter appears on the label of the module (e.g. **COM+/1801T**), but all other properties remain the same

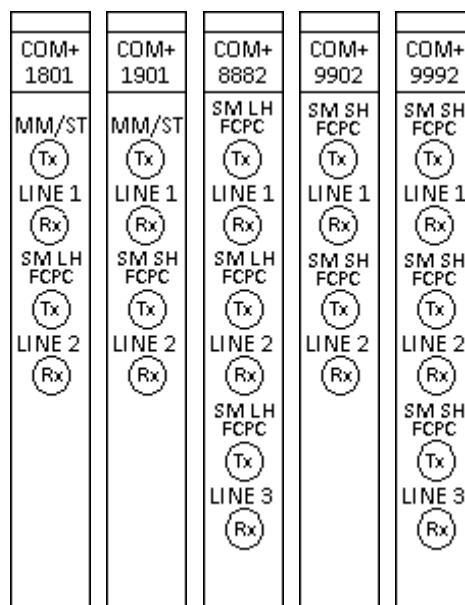
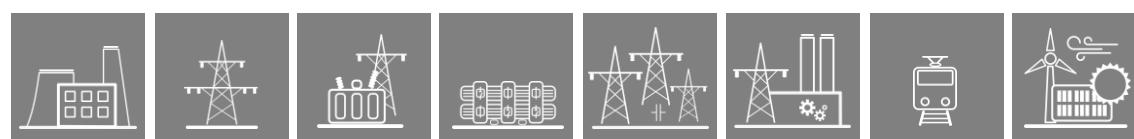



Figure 2-2 COM modules for binary signal transmission

1.3.4.2.2. COM modules for line differential communication

MODULE TYPE	INTERFACE TYPE	NUMBER OF INTERFACES	UNIT WIDTH	APPLICATION
COM+/0091	G703.1 (64 kbit/s)	1	4 HP	Line differential protection via telecom network
COM+/1101	MM/ST 1300 nm, 50/62.5/125 µm connector, 100Base-FX Ethernet	2	4 HP	3 terminals / redundant line differential protection up to 2 km
COM+/1801*	MM/ST 1300 nm, 50/62.5/125 µm and SM/FC 1550 nm, 9/125 µm connector, 100Base-FX Ethernet	2	4 HP	3 terminals / redundant line differential protection up to 2 km and up to 120 km
COM+/1901*	MM/ST 1300 nm, 50/62.5/125 µm and SM/FC 1550 nm, 9/125 µm connector, 100Base-FX Ethernet	2	4 HP	3 terminals / redundant line differential protection up to 2 km and up to 50 km
COM+/8801	SM/FC 1550 nm, 9/125 µm connector, 100Base-FX Ethernet	2	4 HP	3 terminals / redundant line differential protection up to 120 km
COM+/9901	SM/FC 1550 nm, 9/125 µm connector, 100Base-FX Ethernet	2	4 HP	3 terminals / redundant line differential protection up to 50 km

*Note: the modules can be equipped with a different handle (narrower and made of aluminum, instead of the standard plastic), if the other modules of the device are equipped with top-screw terminals (see Chapter 20.2). In these cases, a "T" letter appears on the label of the module (e.g. **COM+/1801T**), but all other properties remain the same

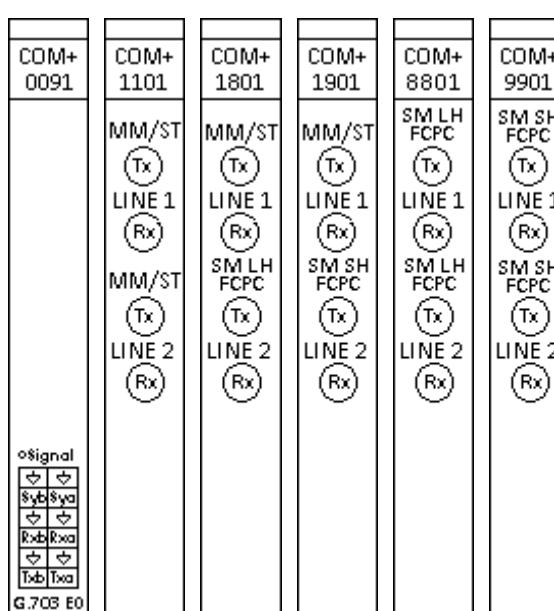
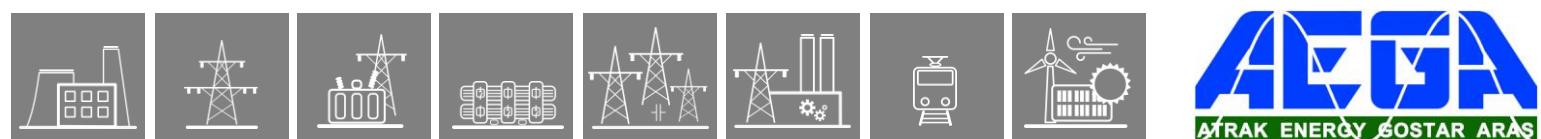



Figure 2-3 COM modules for line differential applications

1.3.4.2.3. COM modules for busbar differential protection communication

MODULE TYPE	INTERFACE TYPE	NUMBER OF INTERFACES	UNIT WIDTH	APPLICATION
COM+/1111	MM/ST 1300 nm, 50/62.5/125 µm connector, 100Base-FX Ethernet	3	4 HP	Busbar protection for 3 bay units up to 2 km
COM+/1111D	MM/ST 1300 nm, 50/62.5/125 µm connector, 100Base-FX Ethernet	3	4 HP	Busbar protection for 3x2 bay units (dual) up to 2 km

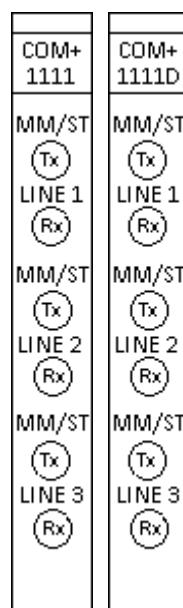
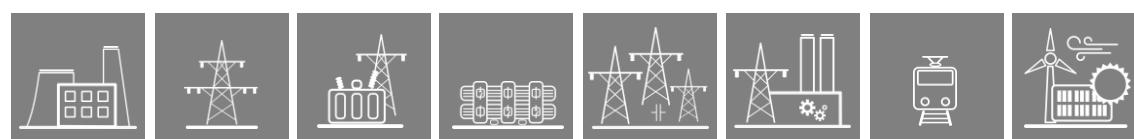



Figure 2-4 COM modules for busbar differential protections

1.3.4.2.4. COM modules for Remote I/O (RIO) servers

MODULE TYPE	INTERFACE TYPE	NUMBER OF INTERFACES	UNIT WIDTH	APPLICATION
COM+/1202*	MM/LC 1300 nm, 50/62.5/125 µm connector, 100Base-FX Ethernet	2	8 HP	2-port Ethernet switch for MODBUS via RIO
COM+/1324*	MM/LC 1300 nm, 50/62.5/125 µm connector, 100Base-FX Ethernet	4	8 HP	4-port Ethernet switch for MODBUS via RIO
COM+/1335	MM/LC 1300 nm, 50/62.5/125 µm connector, 100Base-FX Ethernet	5	8 HP	5-port Ethernet switch for MODBUS via RIO
COM+/6603	MM/LC 1300 nm, 50/62.5/125 µm connector, 100Base-FX Ethernet	2	4 HP	2-port Ethernet switch for MODBUS via RIO
COM+/6663	MM/LC 1300 nm, 50/62.5/125 µm connector, 100Base-FX Ethernet	3	4 HP	3-port Ethernet switch for MODBUS via RIO

*Obsolete module. These modules are not recommended for new designs!

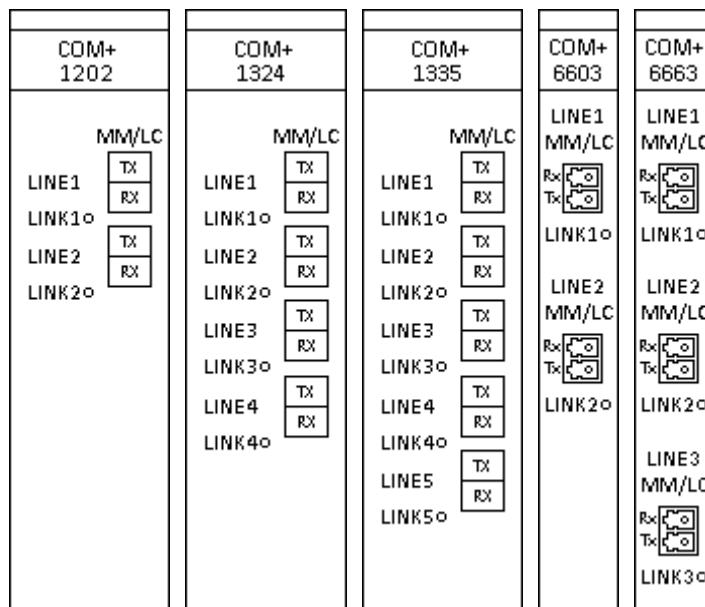
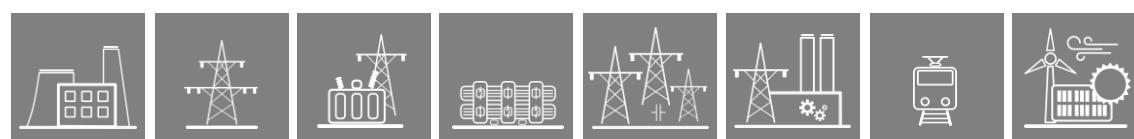



Figure 2-5 COM modules for RIO servers

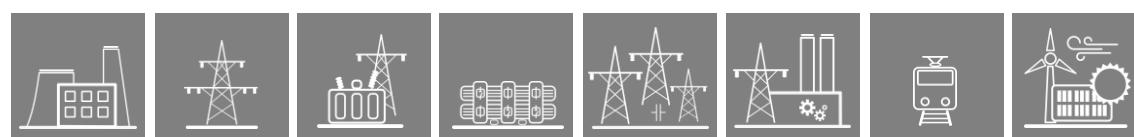
1.3.4.3. Communication interface characteristics

1.3.4.3.1. Ethernet multi-mode transmitter and receiver

1.3.4.3.1.1. MM/ST connector

Up to approximately 2 km.

Transmitter


PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT
OPTICAL OUTPUT POWER 62.5/125 μm , NA = 0.275 FIBER	P_o	BOL*: -19 EOL*: -20	-	-14	dBm avg.
OUTPUT OPTICAL POWER 50/125 μm , NA = 0.20 FIBER	P_o	BOL*: -22.5 EOL*: -23.5	-	-14	dBm avg.
OPTICAL EXTINCTION RATIO	ER	-	-	10 -10	% dB
CENTER WAVELENGTH	λ_c	1270	1308	1380	nm

* BOL: Beginning of life, EOL: End of life

Note: according to field experiences, the 62.5/125 μm cabling is recommended for applications where the center wavelength is 1300/1310 nm.

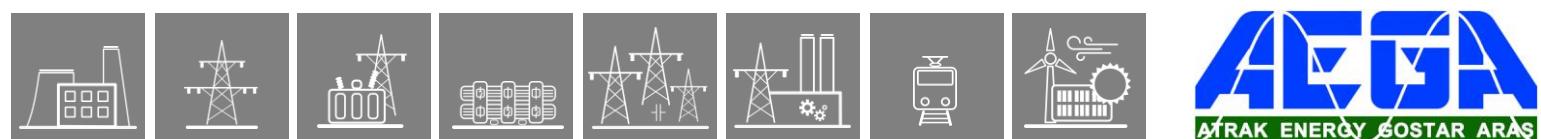
Receiver sensitivity is measured with $2^{23} - 1$ PRBS pattern within $\text{BER} = 2.5 \times 10^{-10}$

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT
SIGNAL DETECT - ASSERTED	P_A	$P_D + 1.5 \text{ dB}$	-	-33	dBm avg.
SIGNAL DETECT - DEASSERTED	P_D	-45	-	-	dBm avg.
SIGNAL DETECT - HYSTERESIS	$P_A - P_D$	1.5	-	-	dB
SIGNAL DETECT ASSERT TIME (OFF TO ON)	AS_Max	0	2	100	μs
SIGNAL DETECT DEASSERT TIME (ON TO OFF)	ANS_Max	0	8	350	μs

1.3.4.3.1.2. MM/LC connector

Up to approximately 2 km.

Transmitter


PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT
OPTICAL OUTPUT POWER** 62.5/125 µm, NA = 0.275 FIBER	P_o	BOL*: -19 EOL*: -20	-15.7	-14	dBm avg.
OUTPUT OPTICAL POWER 50/125 µm, NA = 0.20 FIBER	P_o	BOL*: -22.5 EOL*: -23.5	-	-14	dBm avg.
OPTICAL EXTINCTION RATIO	ER	-	0.002 -47	0.2 -27	% dB
CENTER WAVELENGTH	λ_c	1270	1308	1380	nm

* BOL: Beginning of life, EOL: End of life

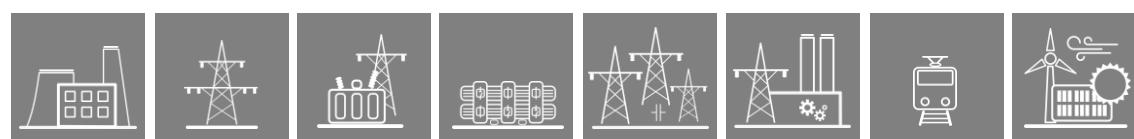
Note: according to field experiences, the **62.5/125 µm** cabling is recommended for **applications where the center wavelength is 1300/1310 nm.**

Receiver sensitivity is measured with $2^{23}-1$ PRBS pattern within $BER = 2.5 \times 10^{-10}$

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT
SIGNAL DETECT - ASSERTED	P_A	$P_D + 1.5$ dB	-	-33	dBm avg.
SIGNAL DETECT - DEASSERTED	P_D	-45	-	-	dBm avg.
SIGNAL DETECT - HYSTERESIS	$P_A - P_D$	1.5	-	-	dB
SIGNAL DETECT ASSERT TIME (OFF TO ON)	AS_Max	0	2	100	µs
SIGNAL DETECT DEASSERT TIME (ON TO OFF)	ANS_Max	0	5	100	µs

1.3.4.3.2. Ethernet single mode transmitter and receiver

1.3.4.3.2.1. Long haul single mode transceiver


Up to approximately 120 km, with max. 32 dB link attenuation.

Transmitter

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT
OPTICAL OUTPUT POWER	P_O	-6	-	0	dBm avg.
OPTICAL EXTINCTION RATIO	ER	8.3	-	-	dB
CENTER WAVELENGTH	λ_c	1490	1550	1610	nm

Receiver sensitivity is measured with $2^{23} - 1$ PRBS pattern within $BER = 2.5 \times 10^{-10}$

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT
OPTICAL INPUT SENSITIVITY	P_{IN}	-	-38	-35	dBm avg.
SATURATION	P_{SAT}	-3	0	-	dBm
CENTER WAVELENGTH	λ_c	1100	-	1600	nm
SIGNAL DETECT - ASSERTED	P_A	-	-	-35	dBm avg.
SIGNAL DETECT - DEASSERTED	P_D	-45	-	-	dBm avg.
HYSTeresis	P_{HYS}	-	3	-	dB

1.3.4.3.2.2. Short haul single mode transceiver

Up to approximately 50 km, with max. 27 dB link attenuation.

Transmitter

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT
OPTICAL OUTPUT POWER	P_O	-12	-	-6	dBm avg.
OPTICAL EXTINCTION RATIO	ER	8.3	-	-	dB
CENTER WAVELENGTH	λ_c	1490	1550	1610	nm

Receiver sensitivity is measured with $2^{23} - 1$ PRBS pattern within $BER = 2.5 \times 10^{-10}$

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT
OPTICAL INPUT SENSITIVITY	P_{IN}	-	-38	-35	dBm avg.
SATURATION	P_{SAT}	-3	0	-	dBm
CENTER WAVELENGTH	λ	1100	-	1600	nm
SIGNAL DETECT - ASSERTED	P_A	-	-	-35	dBm avg.
SIGNAL DETECT - DEASSERTED	P_D	-45	-	-	dBm avg.
HYSTERESIS	P_{HYS}	-	3	-	dB

1.3.4.3.3. ASIF-O transmitter and receiver

1.3.4.3.3.1. ASIF-O POF

Transmitter

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT	JUMPER SETTINGS
TRANSMITTER OUTPUT OPTICAL POWER	P_T	-15.3	-	-9	dBm	JP1 2-3
		-23.3	-	-17		JP1 1-2
PEAK EMISSION WAVELENGTH	λ_{PK}	-	660	-	nm	
EFFECTIVE DIAMETER	D	-	1	-	mm	
NUMERICAL APERTURE	NA	-	0.5	-		

Receiver

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT
INPUT OPTICAL POWER LEVEL LOGIC 0	$P_{R(L)}$	-39	-	-13.7	dBm
INPUT OPTICAL POWER LEVEL LOGIC 1	$P_{R(H)}$	-	-	-53	dBm
EFFECTIVE DIAMETER	D	-	1	-	mm
NUMERICAL APERTURE	NA	-	0.5	-	

These characteristics are valid for both POF interfaces in CPU+1331 module.

1.3.4.3.3.2. ASIF-O GLASS

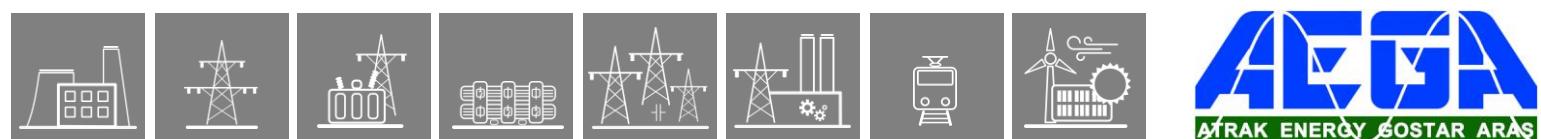
Transmitter (Output measured out of 1 meter of cable)

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT	JUMPER SETTINGS
50/125 μm FIBER CABLE NA = 0.2	P_o	-19.4	-16.4	-14.4	dBm peak	JP1 2-3
		-28.9	-25.9	-23.9		JP1 1-2
62.5/125 μm FIBER CABLE NA = 0.275	P_o	-15.6	-12.6	-10.6	dBm peak	JP1 2-3
		-22.9	-19.9	-17.9		JP1 1-2

Receiver

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT
PEAK OPTICAL INPUT POWER LOGIC LEVEL HIGH ($\lambda_P = 820 \text{ nm}$)	P_{RH}	-25.4	-	-9.2	dBm peak
PEAK OPTICAL INPUT POWER LOGIC LEVEL LOW	P_{RL}	-	-	-40	dBm peak

1.3.4.3.4. ASIF-G transmitter and receiver


The RS422/RS485 interfaces of our CPU+1501, CPU+1511, CPU+1581, CPU+9501 modules provide galvanic interface to support legacy or other serial protocols. For more details see our RS485/422 application note, available on our homepage.

Transmitter

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT
DIFFERENTIAL OUTPUT VOLTAGE (LOADED, $R_L = 100 \Omega$, RS422)	V_{OD2}	2	-	3.6	V
DIFFERENTIAL OUTPUT VOLTAGE (LOADED, $R_L = 54 \Omega$, RS485)	V_{OD2}	1.5	-	3.6	V

Receiver

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT
DIFFERENTIAL INPUT THRESHOLD VOLTAGE	V_{TH}	-200	-125	-30	mV
INPUT VOLTAGE HYSTERESIS	V_{HYS}	-	15	-	mV
LINE INPUT RESISTANCE	R_{IN}	96	-	-	k Ω

1.3.4.3.5. G.703 64 kbit/s co-directional interface (E0)

The EuroProt+ device also supports line differential communication via telecom networks using • 64 kbit/s co-directional interface type through COM+0091. This type of communication is performed via 2×2 wire isolated galvanic type interface. The protection device is connected to a multiplexer or gateway which is responsible for protocol/speed conversion.

- Connector type: Weidmüller: Receptacle: S2L 3.50/12/90 F
Plug: B2L 3.50/12/180 F
- Impedance: 120Ω
- Cable length: 50 m
- Interface type: G.703.1 64 kbit/s (E0) co-directional, selectable grounding, with optional external clock input


For further information about the cable assembly of this type of interface please see our G.703 E0 cable assembly guide.

Receiver

PARAMETER	VALUE
LOSS OF SIGNAL ALARM LEVEL	± 1.5 dB difference between alarm-on and alarm-off
DYNAMIC RANGE	10 dB maximum cable loss range

Transmitter

PARAMETER	VALUE
PAIR FOR EACH DIRECTION	± 1.5 dB difference between alarm-on and alarm-off
TEST LOAD IMPEDANCE	10 dB maximum cable loss range
NOMINAL PEAK VOLTAGE OF A “MARK” (PULSE)	One symmetric pair
PEAK VOLTAGE OF A “SPACE” (NO PULSE)	120Ω resistive
NOMINAL PULSE WIDTH	1.0 V
RATIO OF THE AMPLITUDES OF POSITIVE AND NEGATIVE	$0 \text{ V} \pm 0.10 \text{ V}$
PULSES AT THE CENTRE OF THE PULSES INTERVAL	3.9 ms
RATIO OF THE WIDTHS OF POSITIVE AND NEGATIVE PULSES	0.95 to 1.05
AT THE NOMINAL HALF AMPLITUDE	0.95 to 1.05
MAXIMUM PEAK-TO-PEAK JITTER AT THE OUTPUT PORT	Refer to clause 2/G.823

1.3.4.3.5.1. PRP/HSR redundant Ethernet communication interface

The PRP/HSR redundant Ethernet communication interface supports the two new IEC 62439-3 protocols which provide seamless redundancy for Ethernet networking in substations with zero-time recovery in case of a single failure without frame loss:

- PRP – Parallel Redundancy Protocol (IEC 62439-3 Clause 4)
- HSR – High-availability Seamless Redundancy (IEC 62439-3 Clause 5)

This interface uses two MM/LC connectors for double connection to networks as these protocols are based on the duplication of the sent frames.

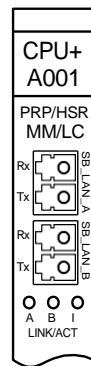


Figure 2-6 PRP/HSR connectors on a CPU+A001 module

1.3.4.3.5.2. Parallel Redundancy Protocol (PRP)

This redundancy protocol implements redundancy in the nodes as they are connected to two independent networks (LAN_A and LAN_B) sending a copy of each frame to both directions. The destination node receives and processes the first copy and discards the other copy of the sent frame.

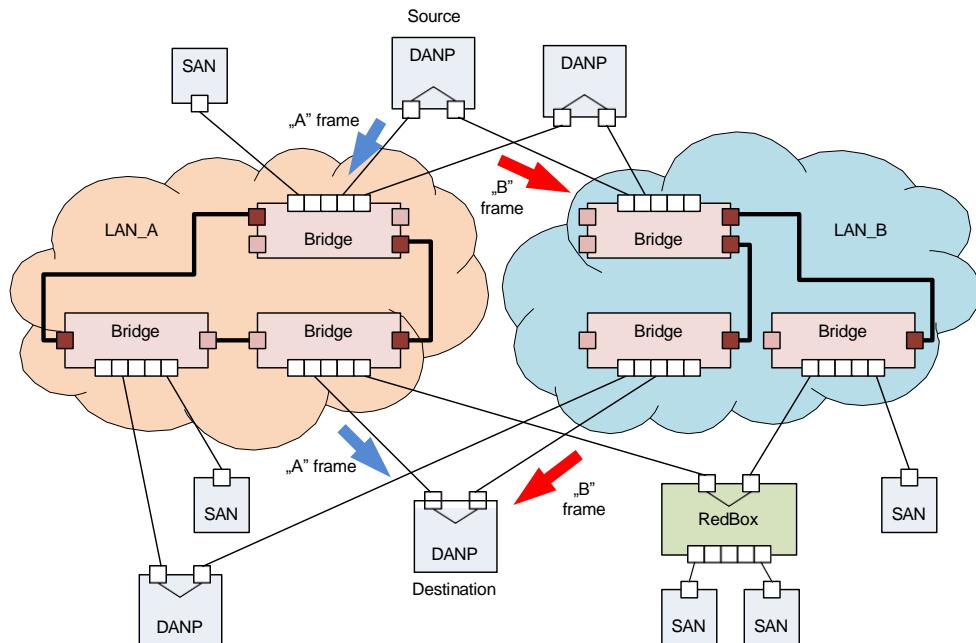


Figure 2-7 Example of a PRP redundant network

Single attached node (SAN): Network device that connects to a network with only one port.

Double attached node implementing PRP (DANP): Network device which connects to a network with two ports implementing PRP redundancy.

1.3.4.3.5.3. High-availability Seamless Redundancy (HSR)

An HSR network provides redundancy with the same safety as PRP does with a lower cost. The principle of this protocol is also based on the duplication of the sent frames but in this solution the nodes are connected to a closed ring. A source node sends two copy of a frame to both direction and the destination node accepts the first received copy and discards the other one. If a frame returns to its source the node does not let it through itself prevent the possibility of an overload of the ring.

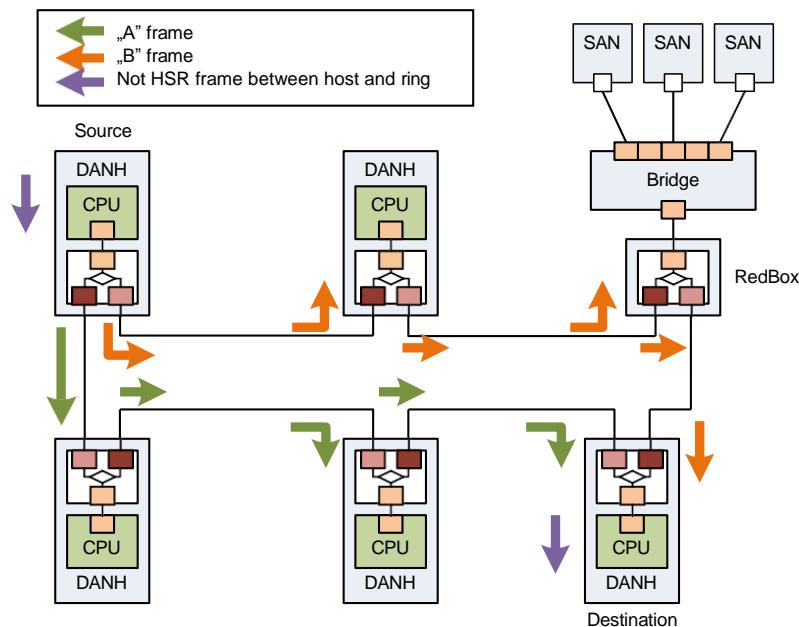


Figure 2-8 Example of an HSR redundant network

Single attached node (SAN): Network device that connects to a network with only one port.

Double attached node implementing HSR (DANH): Network device which connects to a network with two ports implementing HSR redundancy.

1.3.5. Device housings

Three+one versions are available: one is 84 HP wide with 21 module slots, the 42 HP wide, which supports 10 module slots, the double 42 HP wide with 20 module slots, and finally the 24 HP, which supports 6 module slots.

Depending on the installed modules of the configuration, the top and bottom panels of the 84 HP and 42 HP racks can be either solid (default) or perforated by 2 mm holes to prevent overheating. 24 HP housings do not have this feature, as the S24 system is less flexible, their range of the optional modules are narrower.

RACK CONFIGURATION	FREE MODULE SLOTS*	BOTTOM AND TOP PANELS	DISPLAY OPTIONS
84 HP, SINGLE RACK (3 U)	20	Solid, Perforated	3.5" TFT, 5.7" TFT
42 HP, SINGLE RACK (3 U)	9	Solid, Perforated	3.5" TFT, 5.7" TFT
42 HP, DOUBLE RACK (6 U)	19	Solid, Perforated	3.5" TFT
24 HP, PANEL INSTRUMENT CASE	5	Solid	B/W alphanumeric 3.5" TFT

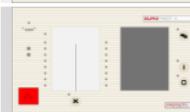
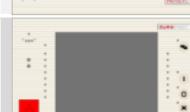
*CPU module is mandatory, it uses up one fixed position

Previously, a new rack type has been introduced to the 42HP devices. As of April 2021. this type is introduced to the 84HP devices as well. The depth of the box has been reduced from 242 mm to 223 mm. By default, this reduced-depth housing shall be used for newly manufactured devices. For more information about the previous and new size, see Chapter [22.1](#).

The following images showcase examples of the different types of available device housings with different kinds of front panel HMI. The available front panels are listed in Chapter 4.

<p>84 HP single rack (3 U) with 3.5" TFT display and solid housing</p>	
<p>84 HP single rack (3 U) with 5.7" TFT display and perforated housing</p>	
<p>42 HP single rack (3 U) with 3.5" TFT display and solid housing</p>	
<p>42 HP double rack (6 U) with 3.5" TFT display and solid housing</p>	
<p>24 HP panel instrument case with B/W display (left) TFT display (right)</p>	

Figure 3-1 Rack configuration illustrations

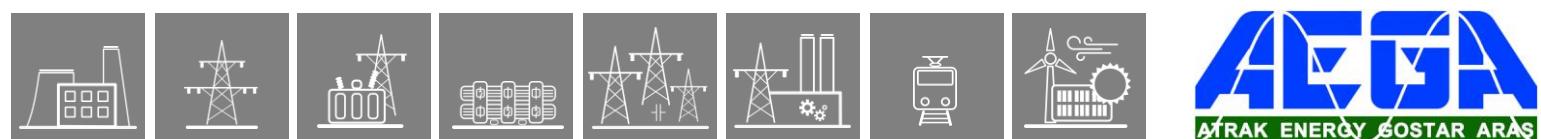




1.3.6. Human-Machine Interface (HMI) module


The EuroProt+ device HMI consists of the following two main parts:

- Hardware: the HMI module, which is the front panel of the device, this is described here
- Software: the embedded web server and the menu system that is accessible through the HMI module. The web server is accessible via station bus, EOB interface or RJ-45 Ethernet connector. This is described in detail in the [Operating Manual](#) (external document).

1.3.6.1. Local HMI modules


MODULE TYPE	DISPLAY	SERVICE PORT	RACK SIZE	RACK DEPTH	ILLUSTRATION
HMI+/3505 HMI+/3405*	3,5" TFT	EOB	42 HP	Reduced	
			84 HP		
HMI+/3506 HMI+/3406* HMI+/3404*	3,5" TFT	RJ-45	42 HP	Reduced	
			Double 42HP		
			84 HP		
HMI+/5005	5,7" TFT	EOB	42 HP	Reduced	
HMI+/5006 HMI+/5004*	5,7" TFT	RJ-45	42 HP	Reduced	
			Double 42 HP		n/a
HMI+/5706 HMI+/5704*	5,7" TFT	RJ-45	84 HP	Reduced	

*new display hardware requires CDSP firmware version 1560-H5 or higher!

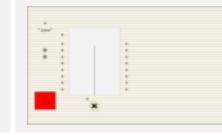
The following modules were made for the previous (now obsolete) racks (see Chapter 22.1), so they can be found in numerous devices. These became obsolete as well, **they are not recommended for new designs!**

MODULE TYPE	DISPLAY	SERVICE PORT	RACK SIZE	RACK DEPTH	ILLUSTRATION
HMI+/3501	3,5" TFT	EOB	42 HP	Normal	
			84 HP		
HMI+/3502	3,5" TFT	RJ-45	42 HP	Normal	
			84 HP		
HMI+/5001	5,7" TFT	EOB	42 HP	Normal	
HMI+/5002	5,7" TFT	RJ-45	42 HP	Normal	
HMI+/5701	5,7" TFT	EOB	84 HP	Normal	
HMI+/5702	5,7" TFT	RJ-45	84 HP	Normal	

1.3.6.2. Remote HMI

Protecta provides an alternative solution in that case if the IED can be only mounted in a non-practical way for managing the device via usual Human-Machine Interface.

By using a remote HMI (*terminal HMI device*), customers can place the HMI up to 3 meters far from the IED itself (*host device*) and mount the IED in any possible way that is applicable. The connection between the remote HMI and the IED is provided by a custom galvanic interface with DA-15 connector on the remote side.


Depending on the size of the HMI module you can use any applicable mounting methods that described in the [Mounting methods](#) chapter (Flush mounting, Semi-flush mounting, Rack mounting).

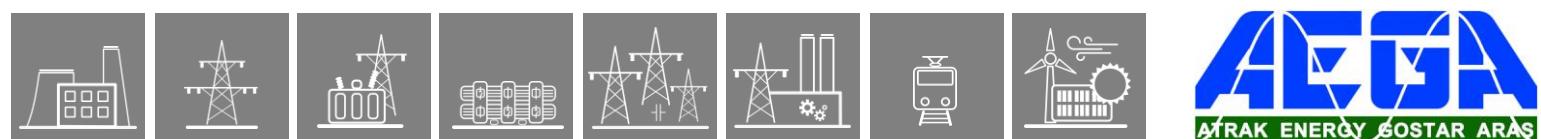
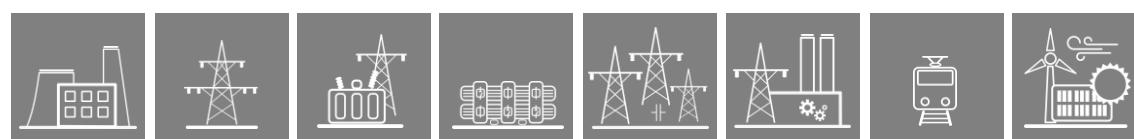


Figure 4-1 42 HP Remote HMI


Figure 4-2 Remote HMI module with its host device

MODULE TYPE	DISPLAY	SERVICE PORT	RACK SIZE	RACK DEPTH	ILLUSTRATION
HMIT+/3505	3,5" TFT	EOB	42 HP	Reduced	
			84 HP		
HMIT+/3506	3,5" TFT	RJ-45	42 HP	Reduced	
			84 HP		
HMIT+/5706	5,7" TFT	RJ-45	84 HP	Reduced	

The following modules were made for the previous (now obsolete) racks (see Chapter 22.1), so they can be found in numerous devices. These became obsolete as well, **they are not recommended for new designs!**

MODULE TYPE	DISPLAY	SERVICE PORT	RACK SIZE	RACK DEPTH	ILLUSTRATION
HMIT+/3501	3,5" TFT	EOB	42 HP	Normal	
			84 HP		
HMIT+/3502	3,5" TFT	RJ-45	42 HP	Normal	
			84 HP		
HMIT+/5702	5,7" TFT	RJ-45	84 HP	Normal	

1.3.6.3. S24 HMI

The S24 Smart Line devices have a different HMI family:

MODULE TYPE	DISPLAY	SERVICE PORT	RACK SIZE	MOUNTING	ILLUSTRATION
HMI+/2604* HMI+/2404 HMI+/2304**	3,5" TFT	RJ-45	24 HP	Nornal	
HMI+/2606* HMI+/2406 HMI+/2306**	3,5" TFT	RJ-45	24 HP	DIN-rail	
HMI+/2704* HMI+/2504	B&W LCD	RJ-45	24 HP	Normal	
HMI+/2706* HMI+/2506	B&W LCD	RJ-45	24 HP	DIN-rail	

*for newer, modular-type S24 devices

**new display hardware requires CDSP firmware version 1560-H5 or higher!

The following module is **obsolete**, it is not recommended for new designs!

MODULE TYPE	DISPLAY	SERVICE PORT	RACK SIZE	MOUNTING	ILLUSTRATION
HMI+/2401*	3,5" TFT	EOB	24 HP	Normal	

1.3.6.4. Parts of the HMI modules

The EuroProt+ device HMI on the front panel contains the following elements:

Function	Description
16 PIECES USER LEDs	Three-color, 3 mm circular LEDs
COM LED	Yellow, 3 mm circular LED indicating EOB/RJ-45 (on the front panel) communication link and activity
CAPACITIVE TOUCH KEY LEDs	4 pcs yellow, 3 mm circular LEDs indicating touch key actions
DEVICE STATUS LED	1 piece three-color, 3 mm circular LED Green: normal device operation Yellow: device is in warning state Red: device is in error state
DEVICE KEYS (I, O, X, PAGE)	Capacitive touch keys Tactile push buttons
BUZZER	Audible touch key pressure feedback
CHANGEABLE LED DESCRIPTION LABEL	Describes user LED functionality
DISPLAY	320 x 240 pixel TFT color display with resistive touchscreen interface (3.5" or optional 5.7") 128 x 64 LCD black & white display
OPTICAL INTERFACE FOR FACTORY USAGE	For debugging and software development purposes <i>Only for 42 HP and 84 HP devices.</i>
EOB CONNECTOR	Ethernet Over Board: communication interface accomplishes isolated, non-galvanic Ethernet connection with the help of a magnetically attached EOB device. The EOB device has an RJ-45 type connector supporting Ethernet connection to the user computer. This is a proprietary and patented solution from Protecta Ltd. EOB1: Supporting 10Base-T Ethernet connection. Passive device with one RJ45 type connector. Obsolete module. EOB2: Supporting 10/100Base-Tx Ethernet connection. An active device that has a USB port in addition to the RJ45 connector for powering up.
ETHERNET SERVICE PORT	IP56 rated Ethernet 10/100-Base-T interface with RJ-45 type connector (IP56 only valid if the cap of the service port is closed.)

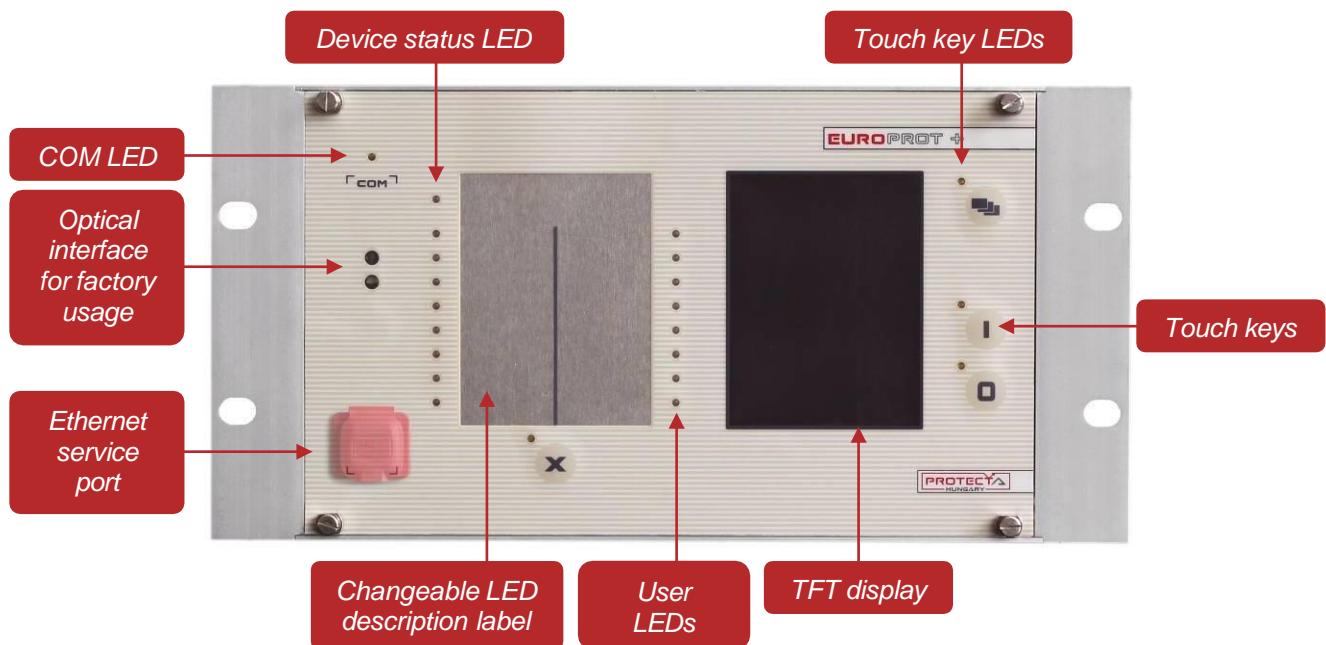
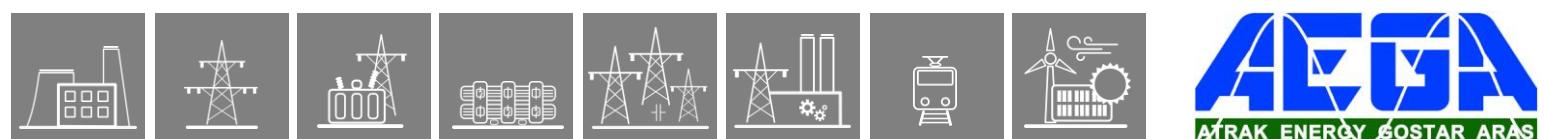



Figure 4–3 HMI signals and controls

LCD dot-defect handling policy

The definitions of dot-defect are as below:

- The defect area of the dot must be bigger than half of a dot.
- For bright dot-defect (sparkle mode), showing black pattern, the dot's brightness must be over 30 % brighter than others at black raster.
- For dark dot-defect (black mode), showing white pattern, the dot's brightness must be under 70 % darker than others at R.G.B. raster.

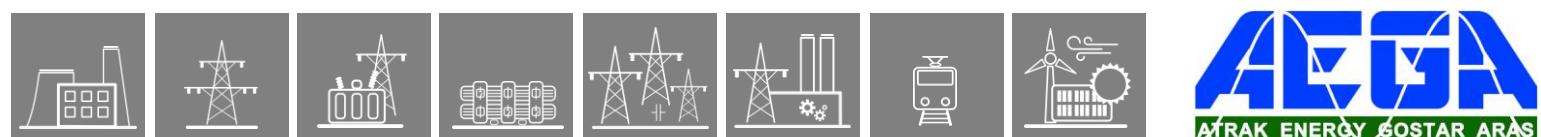
DOT-DEFECT TYPE	MAXIMUM NUMBER ACCEPTABLE	
	3.5"	5.7"
SPARKLE MODE	1 dot	4
	2 dots	2 (sets)
	IN TOTAL	5
BLACK MODE	1 dot	4
	2 dots	2 (sets)
	IN TOTAL	5
SPARKLE MODE AND BLACK MODE	2 dots	2 (sets)
IN TOTAL	6	10

For further information please contact our Application Team. (application@protecta.hu)

1.3.7. Current input module

This is an input module with intermediate current transformers to input the phase currents and the zero-sequence current. The rated current for the phase current and for the zero-sequence current can be selectable by parameter.

Main features:

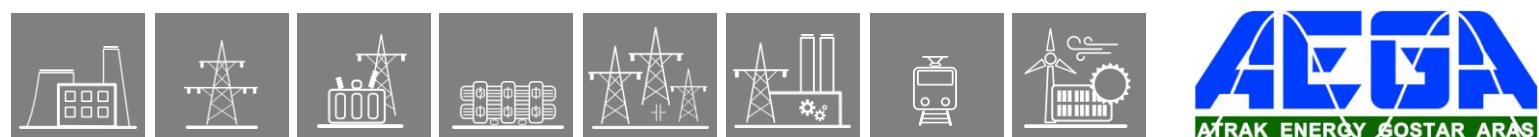

- Rated frequency: 50 Hz, 60 Hz
- *Electronic* iron-core flux compensation

Connector types:

- The default and optionally available connector types are indicated for each module in the tables below. See Chapter 20.2 for details about each type.

MODULE TYPE	CT+/0101		CT+/1111*		CT+/1155		CT+/1500	
CHANNEL NUMBER	1 – 4		1 – 4		1 – 4		1 – 3	
SELECTABLE RATED CURRENT, I_N [A]	0.04	0.2	1	5	1	5	1	5
MAX. MEASURED CURRENT ($\pm 10\%$)	$8 \times I_N$		$50 \times I_N$		$12.5 \times I_N$		$2 \times I_N$	
POWER CONSUMPTION AT RATED CURRENT [VA]	0.005	0.1	0.01	0.25	0.02	0.45	0.1	1.55
THERMAL WITHSTAND [A]								
CONTINUOUSLY	7		20		20		7	
10 s	50		175		120		50	
1 s	150		500		380		150	
10 ms	330		1200		850		330	
CONNECTOR TYPE	<u>Default:</u> STVS <u>Options:</u> -		<u>Default:</u> STVS <u>Options:</u> -		<u>Default:</u> STVS <u>Options:</u> -		<u>Default:</u> STVS <u>Options:</u> R	
RECOMMENDED APPLICATION	DEFL earth fault protection		Special disturbance recorder application in wider frequency range		Special protection applications where the overcurrent in the secondary circuit can not exceed $10 \times I_N$		General three-phase measurement	

*Obsolete module. These modules are not recommended for new designs!



MODULE TYPE	CT+/1515*		CT+/2500*		CT+/5101					
CHANNEL NUMBER	1 – 4		1 – 3		1 – 3		4			
SELECTABLE RATED CURRENT, I_N [A]	1	5	1	5	1	5	0.2	1		
MAX. MEASURED CURRENT ($\pm 10\%$)	$2 \times I_N$		$2 \times I_N$		$50 \times I_N$		$12.5 \times I_N$			
POWER CONSUMPTION AT RATED CURRENT [VA]	0.1	1.55	0.1	1.55	0.01	0.25	0.005	0.1		
THERMAL WITHSTAND [A]										
CONTINUOUSLY	7		7		20		7			
10 s	50		50		175		50			
1 s	150		150		500		150			
10 ms	330		330		1200		330			
CONNECTOR TYPE	Default: STVS Options: -		Default: STVS Options: -		Default: STVS Options: -					
RECOMMENDED APPLICATION	Special disturbance recorder application		Generator protections		Extremely sensitive earth-fault applications					

*Obsolete module. These modules are not recommended for new designs!

MODULE TYPE	CT+/5102				CT+/5111*							
CHANNEL NUMBER	1 – 3		4		1 – 3		4					
SELECTABLE RATED CURRENT, I_N [A]	1	5	0.2	1	1	5	0.001	0.005				
MAX. MEASURED CURRENT ($\pm 10\%$)	$50 \times I_N$		$50 \times I_N$		$50 \times I_N$		$50 \times I_N$					
POWER CONSUMPTION AT RATED CURRENT [VA]	0.01	0.25	0.001	0.01	0.01	0.25	0.005	0.1				
THERMAL WITHSTAND [A]												
CONTINUOUSLY	20		20		20		7					
10 s	175		120		175		50					
1 s	500		380		500		150					
10 ms	1200		850		1200		330					
CONNECTOR TYPE	Default: STVS Options: -				Default: STVS Options: R							
RECOMMENDED APPLICATION	Sensitive earth-fault applications				Sensitive earth-fault applications							

*Obsolete module. These modules are not recommended for new designs!

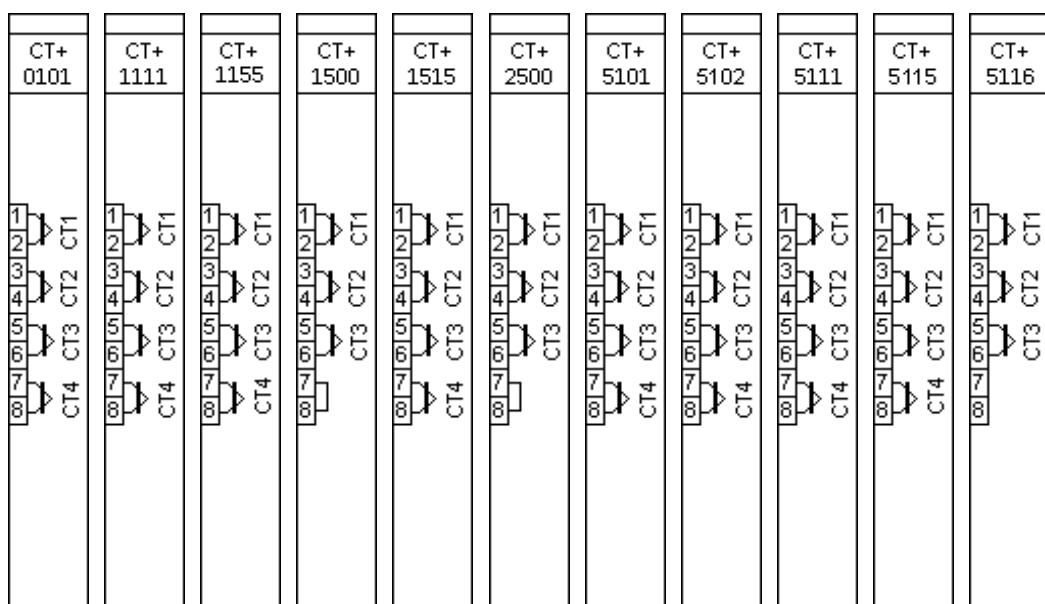


MODULE TYPE	CT+5115		CT+5116		CT+/5151		CT+/5152	
CHANNEL NUMBER	1 – 4		1 – 3		1 – 4		1 – 4	
SELECTABLE RATED CURRENT, I_N [A]	1	5	1	5	1	5	1	5
MAX. MEASURED CURRENT ($\pm 10\%$)	$50 \times I_N$		$50 \times I_N$		$50 I_N$		$50 I_N$	
POWER CONSUMPTION AT RATED CURRENT [VA]	0.01	0.25	0.01	0.25	0.01	0.25	0.01	0.25
THERMAL WITHSTAND [A]								
CONTINUOUSLY	20		20		20		20	
10 s	175		175		175		175	
1 s	500		500		500		500	
10 ms	1200		1200		1200		1200	
CONNECTOR TYPE	<u>Default:</u> STVS <u>Options:</u> R		<u>Default:</u> STVS <u>Options:</u> -		<u>Default:</u> STVS <u>Options:</u> R		<u>Default:</u> STVS <u>Options:</u> R	
RECOMMENDED APPLICATION	<ul style="list-style-type: none"> General protection applications* Three-phase measurement* 		High-impedance differential protection		General protection applications		Busbar protection bay units	

*The CT+/5115 module handles both applications: it can be connected to the protection and measurement core of the primary CT as well

MODULE TYPE	CT+/5153					CT+/5154*							
CHANNEL NUMBER	1 – 3		4			1 – 3		4					
SELECTABLE RATED CURRENT, I_N [A]	1	5	1	0.2	0.2 sens.	1	5	5	1	0.2			
MAX. MEASURED CURRENT ($\pm 10\%$)	$50 \times I_N$			$10 \times I_N$		$50 \times I_N$			$10 \times I_N$				
POWER CONSUMPTION AT RATED CURRENT [VA]	0.06	1.3	0.6	0.004	0.0004	0.06	1.3	1.3	0.06	0.004			
THERMAL WITHSTAND [A]													
CONTINUOUSLY	20		7			20							
10 s	175		50			175							
1 s	500		150			500							
10 ms	1200		330			1200							
CONNECTOR TYPE	<u>Default:</u> STVS <u>Options:</u> R, T**					<u>Default:</u> STVS <u>Options:</u> R							
RECOMMENDED APPLICATION	General protection application, extremely sensitive transient earth-fault protections					General protection application, sensitive transient earth-fault protections							

*Obsolete module. These modules are not recommended for new designs!


**The connector remains the same STVS, only the handle of the module becomes narrower and will be made of aluminum

MODULE TYPE	CT+/5155*					CT+/5253**							
CHANNEL NUMBER	1 – 3		4			1 – 3		4					
SELECTABLE RATED CURRENT, I_N [A]	1	5	0.25	0.05	0.05 sens.	5	1	0.25	0.05	0.05 sens.			
MAX. MEASURED CURRENT ($\pm 10\%$)	$50 \times I_N$				$10 \times I_N$	$25 \times I_N$							
POWER CONSUMPTION AT RATED CURRENT [VA]	0.06	1.3	0.6	0.004	0.0004	0.06	1.3	0.6	0.004	0.0004			
THERMAL WITHSTAND [A]													
CONTINUOUSLY	20	7			20	7							
10 s	175	50			175	50							
1 s	500	150			500	150							
10 ms	1200	330			1200	330							
CONNECTOR TYPE	Default: STVS Options: -					Default: STVS Options: -							
RECOMMENDED APPLICATION	DMD Special sensitive earth fault protection					Circuit breaker diagnostics							

*Obsolete module. These modules are not recommended for new designs!

**Special module

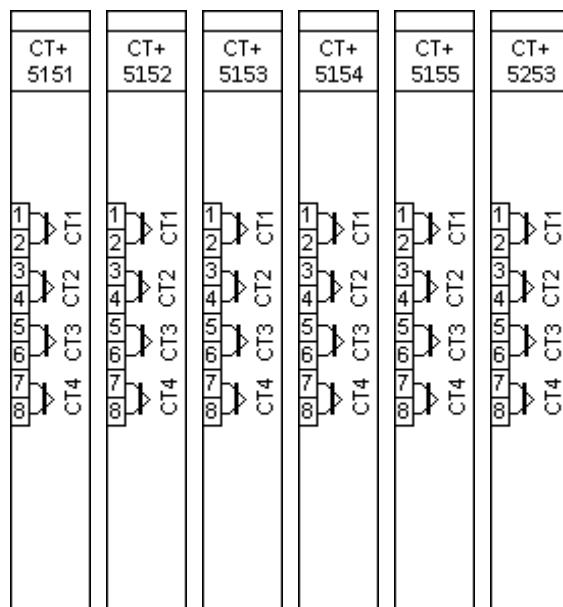
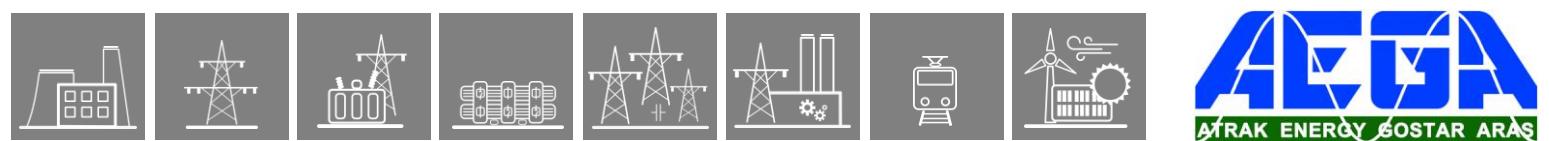
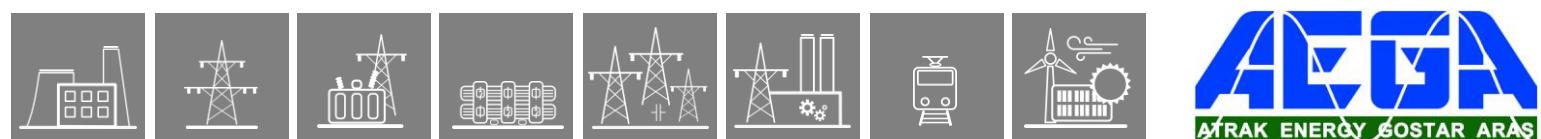




Figure 5-1 CT modules

1.3.8. Voltage input module

If the device performs voltage and/or frequency related functions and measurements (voltage protections, directional protections, frequency protections etc.), then this module is needed.


Connector types:

- The default and optionally available connector types are indicated for each module in the tables below. See Chapter 20.2 for details about each type.

MODULE TYPE	VT+/2211	VT+/2212*	VT+/2215**
CHANNEL NUMBER	4	4	4
SELECTABLE VOLTAGE RANGE	<u>Type 100:</u> $\frac{100}{\sqrt{3}}$, 100 V <u>Type 200:</u> $\frac{200}{\sqrt{3}}$, 200 V	<u>Type 100:</u> $\frac{100}{\sqrt{3}}$, 100 V <u>Type 200:</u> $\frac{200}{\sqrt{3}}$, 200 V	<u>Type 100:</u> $\frac{100}{\sqrt{3}}$, 100 V <u>Type 200:</u> $\frac{200}{\sqrt{3}}$, 200 V
CONTINUOUS VOLTAGE WITHSTAND	200 V	200 V	200 V
SHORT TIME OVERLOAD (1 s)	275 V (10s)	275 V	275 V
VOLTAGE MEASURING RANGE ($\pm 10\%$)	0.05 U_N – 1.3 U_N	0.05 U_N – 1.3 U_N	0.05 U_N – 1.3 U_N
POWER CONSUMPTION OF VOLTAGE INPUT	0.61 VA at 200 V 0.2 VA at 100 V	0.61 VA at 200 V 0.2 VA at 100 V	<u>ch. 1-3:</u> 0.61 VA at 200 V 0.2 VA at 100 V <u>ch. 4:</u> 50 mVA at 100 V
CONNECTOR TYPE	<u>Default:</u> BLA <u>Options:</u> F, T, R	<u>Default:</u> BLA <u>Options:</u> -	<u>Default:</u> BLA <u>Options:</u> -
RECOMMENDED APPLICATION	General protection applications.	Special disturbance recorder application in wider frequency range	Special protection applications with voltage transformers that require low power consumption on the 4 th channel.

*Obsolete module. These modules are not recommended for new designs!

**Special module

MODULE TYPE	VT+/2245	VT+/2246*
CHANNEL NUMBER	4	3
SELECTABLE VOLTAGE RANGE	<u>Type 200:</u> $\frac{200}{\sqrt{3}}$, 200 V <u>Type 400:</u> $\frac{400}{\sqrt{3}}$	
CONTINUOUS VOLTAGE WITHSTAND	400 V	
SHORT TIME OVERLOAD (1 s)	420 V	420 V (10 s)
VOLTAGE MEASURING RANGE ($\pm 10\%$)	0.05 U_N – 1.3 U_N	
POWER CONSUMPTION OF VOLTAGE INPUT	0.21 VA at 200 V 0.28 VA at 230 V	
CONNECTOR TYPE	<u>Default:</u> BLA <u>Options:</u> T	<u>Default:</u> BLA <u>Options:</u> -
RECOMMENDED APPLICATION	Protection applications for 400 V AC secondary voltage	Special protection applications for 400 V AC secondary voltage and increased isolation to 6 kV

*Special module

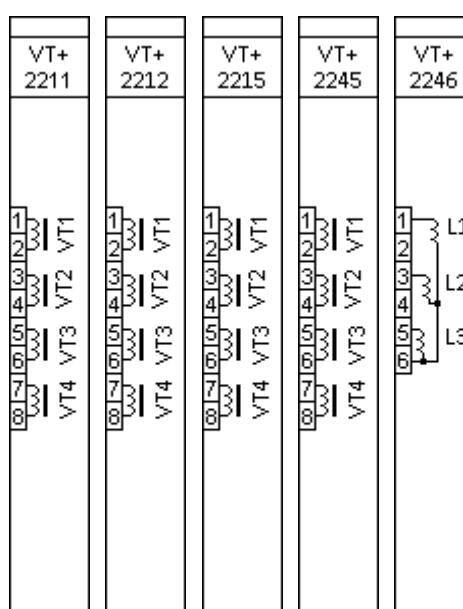
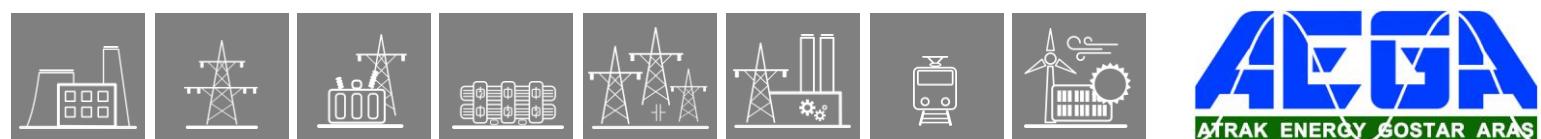


Figure 6-1 VT modules

1.3.9. Binary input module

The inputs are galvanic isolated, and the module converts high-voltage signals to the voltage level and format of the internal circuits. The inputs of this module can be also programmed to serve as a PPM input for time synchronization.

Connector types:


- The default and optionally available connector types are indicated for each module in the tables below. See Chapter 20.2 for details about each type.

Notes for the following tables:

- **Thermal withstand voltage:** continuous with 60 % of the input channels are energized.
- **Clamp voltage:** these are the guaranteed values; the actual ones might differ from those provided here (falling and rising around 0.66 U_N and 0.77 U_N , respectively)

MODULE TYPE	O8+/2401	O8+/4801	O8+/1101	O8+/2201
CHANNEL NUMBER	8	8	8	8
TIME SYNCHRONIZATION	configured by EuroCAP	configured by EuroCAP	configured by EuroCAP	configured by EuroCAP
RATED VOLTAGE	24 V	48 V	110 V	220 V
THERMAL WITHSTAND VOLTAGE	72 V	100 V	250 V	320 V
CLAMP VOLTAGE	falling 0.64 U_N rising 0.8 U_N			
COMMON GROUPS	independent	independent	independent	independent
CONNECTOR TYPE	<u>Default: BLA</u> <u>Options: T</u>	<u>Default: BLA</u> <u>Options: T</u>	<u>Default: BLA</u> <u>Options: T</u>	<u>Default: BLA</u> <u>Options: T</u>

MODULE TYPE	O12+/2401	O12+/4801	O12+/1101	O12+/2201
CHANNEL NUMBER	12	12	12	12
TIME SYNCHRONIZATION	configured by EuroCAP	configured by EuroCAP	configured by EuroCAP	configured by EuroCAP
RATED VOLTAGE	24 V	48 V	110 V	220 V
THERMAL WITHSTAND VOLTAGE	72 V	72 V	250 V	320 V
CLAMP VOLTAGE	falling 0.64 U_N rising 0.8 U_N	falling 0.64 U_N rising 0.8 U_N	falling 0.64 U_N rising 0.8 U_N	falling 0.64 U_N rising 0.8 U_N
COMMON GROUPS	4 × 3 common	4 × 3 common	4 × 3 common	4 × 3 common
CONNECTOR TYPE	<u>Default: BLA</u> <u>Options: T</u>	<u>Default: BLA</u> <u>Options: F, T</u>	<u>Default: BLA</u> <u>Options: F, T</u>	<u>Default: BLA</u> <u>Options: T</u>

MODULE TYPE	O12+/4201*	O12+/2101*	O15+/4801T	O15+/1101T
CHANNEL NUMBER	12	12	15	15
TIME SYNCHRONIZATION	configured by EuroCAP	configured by EuroCAP	configured by EuroCAP	configured by EuroCAP
RATED VOLTAGE	24 V DC / 48 V DC user selectable on channel basis by jumpers	110 V DC / 220 V DC user selectable on channel basis by jumpers	48 V	110 V
THERMAL WITHSTAND VOLTAGE	72 V	320 V	100 V	250 V
CLAMP VOLTAGE	falling 0.64 U _N rising 0.8 U _N	falling 0.64 U _N rising 0.8 U _N	falling 0.64 U _N rising 0.8 U _N	falling 0.64 U _N rising 0.8 U _N
COMMON GROUPS	4 × 3 common	4 × 3 common	1 × 15 common	1 × 15 common
CONNECTOR TYPE	<u>Default:</u> BLA <u>Options:</u> -	<u>Default:</u> BLA <u>Options:</u> T	BLT	BLT

* O12+2101 and O12+4201 modules can be used only in demonstration applications! For further information see our [Product availability chapter](#).

MODULE TYPE	O16+/2401*	O16+/4801*	O16+/1101*	O16+/2201*
CHANNEL NUMBER	16	16	16	16
TIME SYNCHRONIZATION	-	-	-	-
RATED VOLTAGE	24 V	48 V	110 V	220 V
THERMAL WITHSTAND VOLTAGE	72 V	100 V	250 V	320 V
CLAMP VOLTAGE	falling 0.64 U _N rising 0.8 U _N	falling 0.64 U _N rising 0.8 U _N	falling 0.64 U _N rising 0.8 U _N	falling 0.64 U _N rising 0.8 U _N
COMMON GROUPS	2 × 8 common			
CONNECTOR TYPE	<u>Default:</u> BL 3.5 <u>Options:</u> -			

*Obsolete module. These modules are not recommended for new designs! O15+ modules are recommended instead (see above).

Main features:

- Digitally filtered per channel
- Current drain:
 - max. 1.6 mA per channel at 220 V DC
 - max. 1.8 mA per channel at 110 V DC
 - max. 2 mA per channel at 48 V DC
 - max. 3 mA per channel at 24 V DC
- In such applications where the input voltage is 60 V the modules with 48 V rated voltage can be used.
- Input voltage type can be either DC or AC voltage. If AC voltage is used make sure that the type and the parameters of the binary inputs are configured properly in EuroCAP tool.

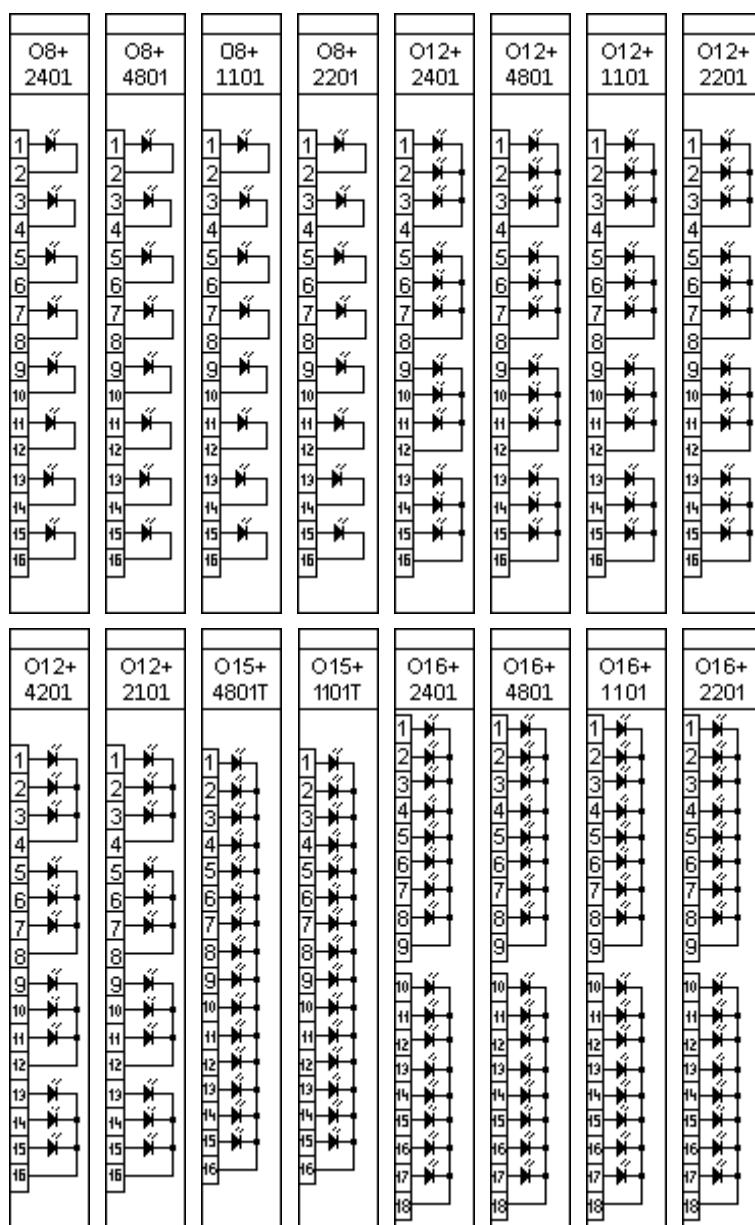
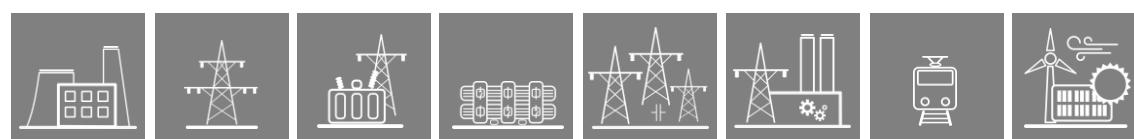



Figure 7-1 Binary input modules

1.3.10. Signaling module

The signaling module has 4, 8, 12 or 16 relay outputs with dry contacts.

Connector types:

- The default and optionally available connector types are indicated for each module in the tables below. See Chapter 20.2 for details about each type.

MODULE TYPE	R4+/01	R8+/00	R8+/80	R8+/C0
RATED VOLTAGE	250 V AC/DC	250 V AC/DC	250 V AC/DC	250 V AC/DC
CONTINUOUS CARRY	8 A	8 A	8 A	8 A
CONTACT VERSIONS	4 CO	8 NO	CH8 NC others NO	CH7 and CH8 NC others NO
GROUP ISOLATION	4 independent	8 independent	8 independent	8 independent
CONNECTOR TYPE	<u>Default: BLA</u> <u>Options: F</u>	<u>Default: BLA</u> <u>Options: F, T</u>	<u>Default: BLA</u> <u>Options: T</u>	<u>Default: BLA</u> <u>Options: T</u>

MODULE TYPE	R8+/FF	R12+/0000	R12+/4000
RATED VOLTAGE	250 V AC/DC	250 V AC/DC	250 V AC/DC
CONTINUOUS CARRY	8 A	8 A	8 A
CONTACT VERSIONS	8 NC	12 NO	CH12 NC others NO
GROUP ISOLATION	8 independent	4 × 3 common	4 × 3 common
CONNECTOR TYPE	<u>Default: BLA</u> <u>Options: -</u>	<u>Default: BLA</u> <u>Options: F, T</u>	<u>Default: BLA</u> <u>Options: F, T</u>

MODULE TYPE	R16+/0000	R16+/8000	R16+/8080
RATED VOLTAGE	250 V AC/DC	250 V AC/DC	250 V AC/DC
CONTINUOUS CARRY	8 A	8 A	8 A
CONTACT VERSIONS	16 NO	CH16 NC others NO	CH16 and CH8 NC others NO
GROUP ISOLATION	2 x 8 common	2 x 8 common	2 x 8 common
CONNECTOR TYPE	<u>Default:</u> BLA <u>Options:</u> -	<u>Default:</u> BLA <u>Options:</u> -	<u>Default:</u> BLA <u>Options:</u> -

MODULE TYPE	R4S+/01*	R4S+/16*	R1T+/0001***
RATED VOLTAGE	250 V AC/DC	250 V AC/DC	320 V AC/DC
CONTINUOUS CARRY	8 A 120 mA**	120 mA	32 A
CONTACT VERSIONS	4 CO (1 SSR, 3 normal)	4 CO (4 SSR)	1 NO
GROUP ISOLATION	4 independent	4 independent	1 independent
CONNECTOR TYPE	<u>Default:</u> BLA <u>Options:</u> -	<u>Default:</u> BLA <u>Options:</u> -	<u>Default:</u> BLA <u>Options:</u> -

*Modules with **solid-state relays (SSR)**

**If the signaling is performed via the solid-state relay the continuous carry value is 120 mA.

*****Thyristor module.** Can be used only unipolarly. *For further information see our Product availability chapter.*

Main features (according to IEC 60255-1):

- Maximum switching voltage: 400 V AC
- Breaking capacity: (L/R=40 ms) at 220 V DC: 0.2 A, at 110 V DC: 0.3 A
- Breaking capacity max.: 2000 VA
- Short time carrying capacity: 1 s, 35 A
- Limiting making current, max. 4 s: 15 A (df = 10 %)
- Dielectric strength between open contacts, 1 min: 1000 V_{RMS}
- Mechanical endurance: 10×10^6 cycles
- Circuit closing capability: typically 10 ms, maximally 22 ms, with SSR 0.5 ms.
- Bounce time: typically 6,5 ms, maximally 10 ms, with SSR 0.5 ms.
- Minimal switching requirement: 5 V
- *The signaling is also performed via a solid-state relay (SSR) channel on R4S+01 and R4S+16 module*

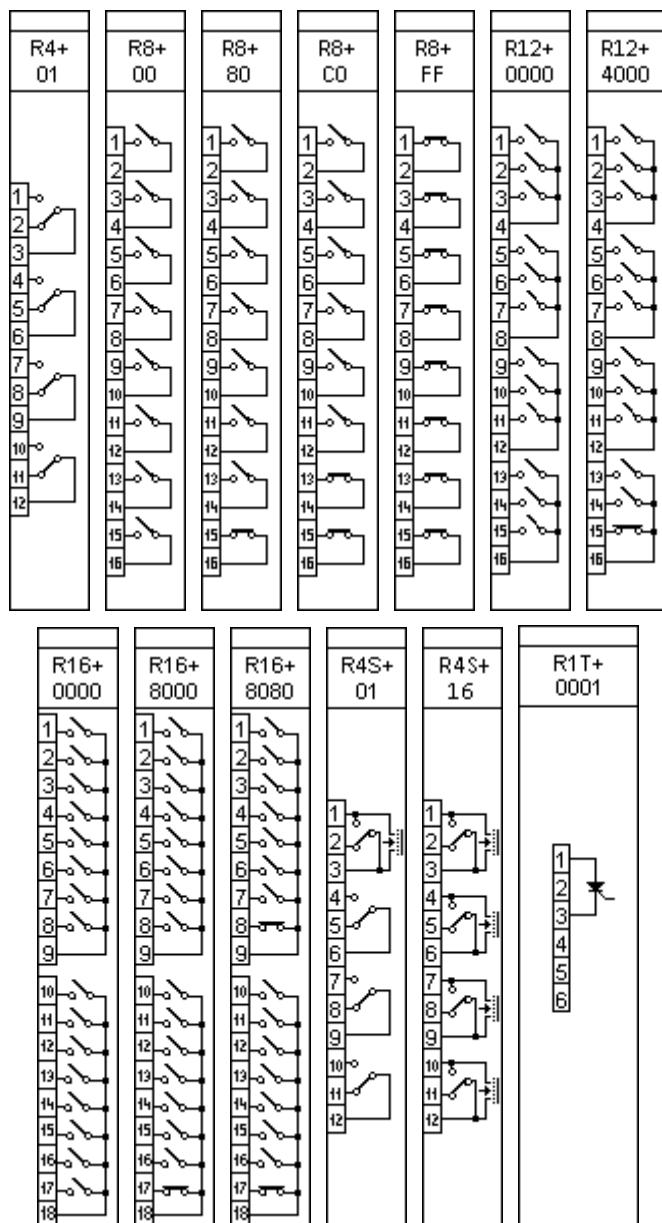
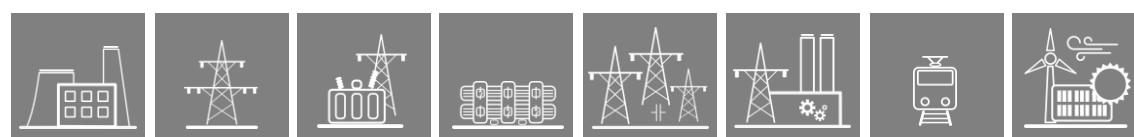



Figure 8-1 Signaling modules

1.3.11. Tripping module

The tripping module is a proprietary and patented solution that facilitates direct control of a circuit breaker.

Connector types:

- The default and optionally available connector types are indicated for each module in the table below. See Chapter [20.2](#) for details about each type.

MODULE TYPE	TRIP+/4201	TRIP+1101*	TRIP+/2101	TRIP+/21F1**	TRIP+/2201
CHANNEL NUMBER	4	4	4	4	4
RATED VOLTAGE	24 V DC and 48 V DC	110 V DC	110 V DC	110 V DC	220 V DC
THERMAL WITHSTAND VOLTAGE	72 V DC	242 V DC	150 V DC	150 V DC	242 V DC
CONTINUOUS CARRY	8 A	8 A	8 A	8 A	8 A
MAKING CAPACITY	0.5 s, 30 A	0.5 s, 30 A	0.5 s, 30 A	0.5 s, 30 A	0.5 s, 30 A
BREAKING CAPACITY	L/R = 40 ms: 4 A DC	L/R = 40 ms: 4 A DC	L/R = 40 ms: 4 A DC	L/R = 40 ms: 4 A DC	L/R = 40 ms: 4 A DC
CONNECTOR TYPE	<u>Default:</u> BLA <u>Options:</u> F, T	<u>Default:</u> BLA <u>Options:</u> -	<u>Default:</u> BLA <u>Options:</u> F, T	<u>Default:</u> BLA <u>Options:</u> T	<u>Default:</u> BLA <u>Options:</u> T

*Obsolete module. These modules are not recommended for new designs!

**Without trip circuit supervision.

Main features:

- High-speed operation: with pre-trip 0.5 ms, without pre-trip typically 10 ms, maximally 22 ms.
- Trip circuit supervision for each trip contact, except TRIP+21F1
- With 2-wire wiring, the tripping output can be *dry* contact type, too

Figure 9-1 Tripping modules

1.3.11.1. TRIP+ module wiring

The tripping module provides tripping circuit supervision function (TCS). The wiring of these modules can be 2-wire or 3-wire. (TCS function is active for all wiring methods.)

The voltage of the "No" contact is maximized at 15 V by a Zener-diode. Make sure that the voltage caused by the resistance of the circuit breaker and the injected current from the TRIP+ module does not reach 10 V.

Our TRIP+ modules are improved to switch DC circuits. **Using reversed polarity or AC voltage can cause the damage of the internal circuits. Improper wiring might cause improper operation!**

1.3.11.1.1. 3-wire TRIP+ wiring methods

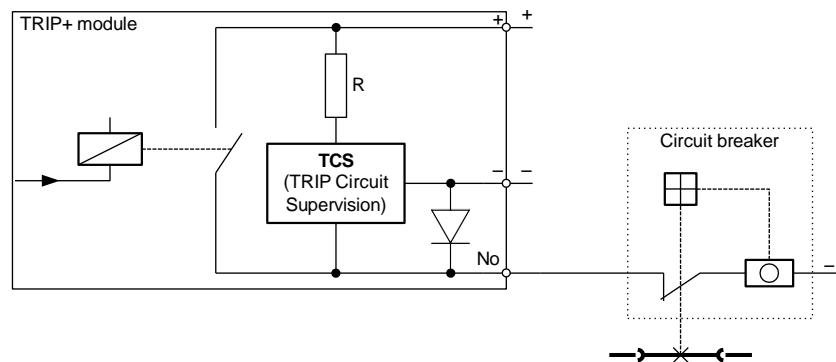


Figure 9-2 3-wire TRIP+ wiring

It is possible to use parallel connected TRIP+ modules. In this case the negative terminals must be common.

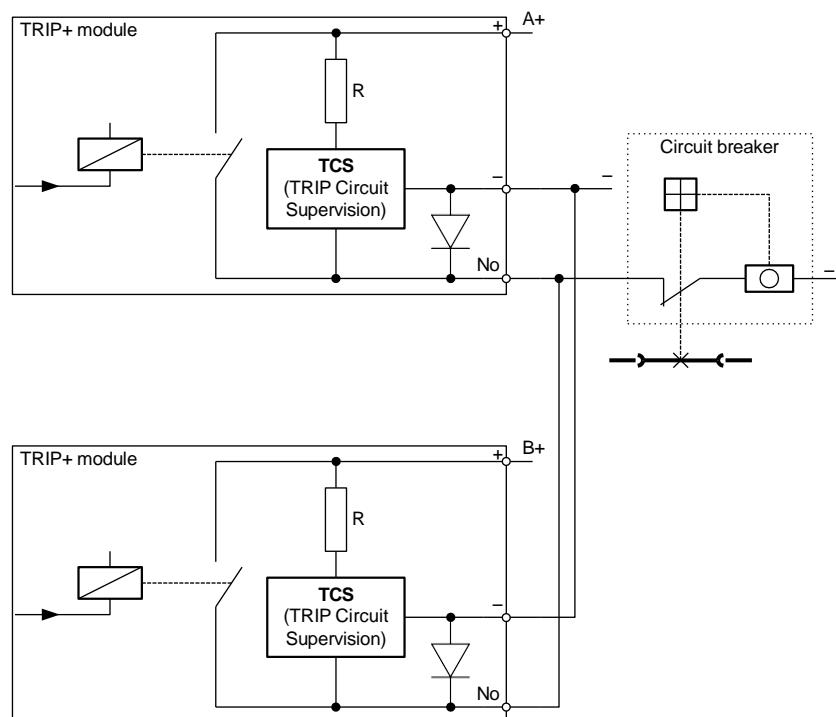
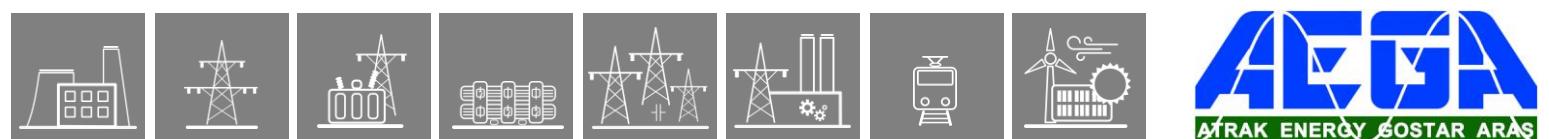



Figure 9-3 3-wire TRIP+ wiring using parallel connected TRIP+ modules

1.3.11.1.2. 2-wire TRIP+ wiring methods

If necessary, the TRIP+ modules can be wired using only the "+" and the "No" contacts.

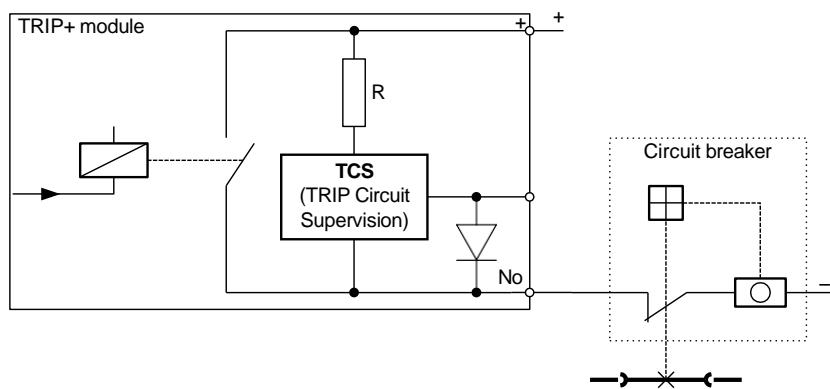


Figure 9-4 2-wire TRIP+ wiring

It is possible to use parallel connected TRIP+ modules.

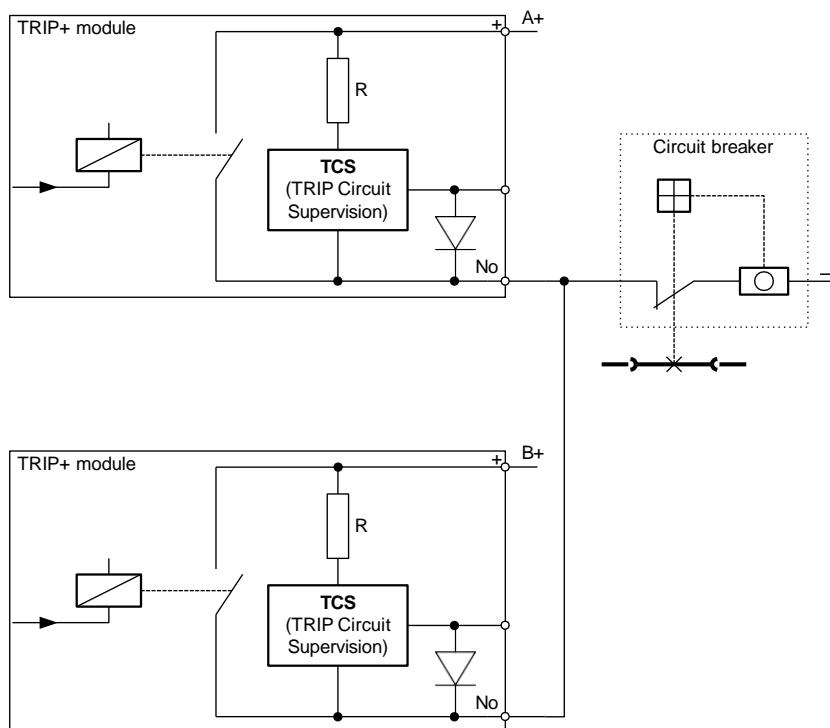
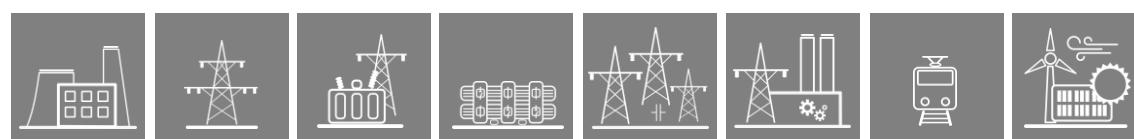



Figure 9-5 2-wire TRIP+ wiring using parallel connected TRIP+ modules

If the circuit breaker needs two-pole switching TRIP+ modules can be connected series as you can see in Figure 9–6.

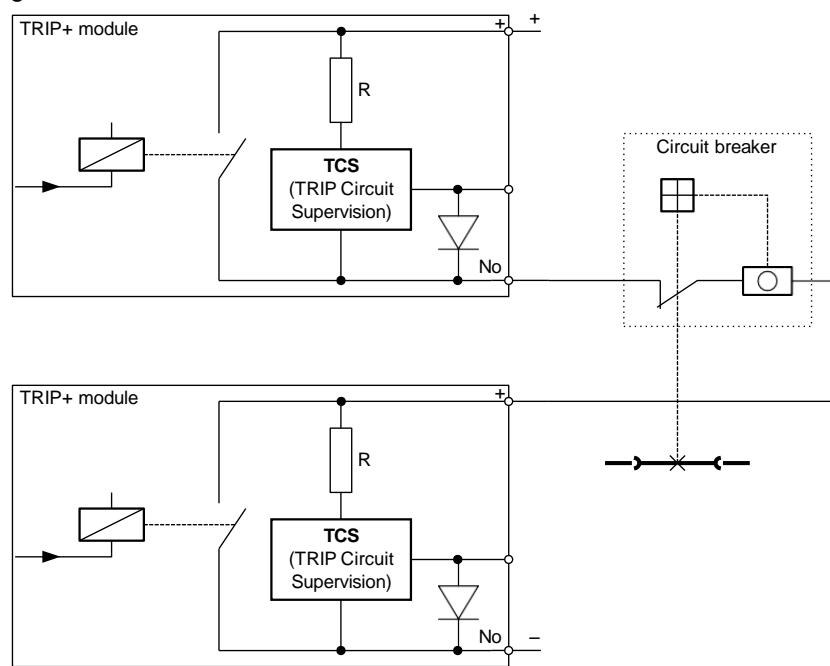
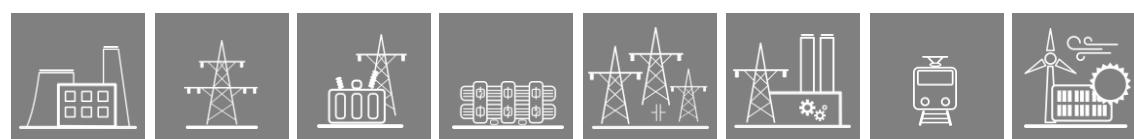


Figure 9-6 2-wire TRIP+ wiring using series connected TRIP+ modules


1.3.11.2. Trip Circuit Supervision (TCS)

Apart from the TRIP+/21F1, all TRIP modules have TCS. The feature is described in detail (tech. data, instructions, etc.) in a separate document:

https://www.protecta.hu/downloads/tcs_en

The technical data of the TCS is shown here as well:

MODULE TYPE	TRIP+/4201	TRIP+/2101	TRIP+/2201
VALUE OF R RESISTOR ($\pm 10\%$)	10 k Ω	73 k Ω	130 k Ω
INJECTED CURRENT AT "NO" CONTACT	2.4 mA @ 24 V DC 4.8 mA @ 48 V DC	1.5 mA @ 110 V DC	1.7 mA @ 220 V DC
3-WIRE WIRING (MAX. 10 V)	11.8 k Ω @ 24 V DC 3.7 k Ω @ 48 V DC	9.7 k Ω @ 110 V DC 8.4 k Ω @ 125 V DC	8.1 k Ω @ 220 V DC
MAXIMUM RESISTANCE OF THE TRIP COIL	5.9 k Ω @ 24 V DC 1.8 k Ω @ 48 V DC	4.8 k Ω @ 110 V DC 4.2 k Ω @ 125 V DC	4 k Ω @ 220 V DC
3-WIRE WIRING WITH IN PARALLEL (MAX. 10 V)	14 k Ω @ 24 V DC 38 k Ω @ 48 V DC	37 k Ω @ 110 V DC 52 k Ω @ 125 V DC	90 k Ω @ 220 V DC
2-WIRE METHOD (1 mA MIN. CURRENT)			

1.3.11.3. Relay output modules of the EuroProt+ system

1.3.11.3.1. Types of the relay output modules of the EuroProt+ system

Basically there are two different types of relay output modules in the EuroProt+ devices:
TRIP relay output module for high-speed operation of the circuit breakers Signal relay output module

1.3.11.3.2. Operating modes of the relay contacts

For operation of the relay output modules there are four different modes:

Application of TRIP relays for commands of fast protection functions

User application of the TRIP relays Fast operation of any relay contacts (TRIP relays or signal relays) Control of signal relay outputs.

The procedures of command processing are shown in. This document describes the details using the TRIP relay contacts as an example.

The left side of the Figure shows the available sources of the trip commands:

The functionblocks, configured in the device,

The communication channels to the SCADA system,

Commands generated using the front panel LCD of the device,

Any other binary signals, e.g. signals from the binary inputs of the device.

The right side of the Figure shows one of the TRIP relays symbolically.

The Figure provides a survey of the configured trip command processing methods. In the middle of the Figure, the locations indicated by "User" shows the possibilities for the user to modify the procedures. All other parts are factory programmed.

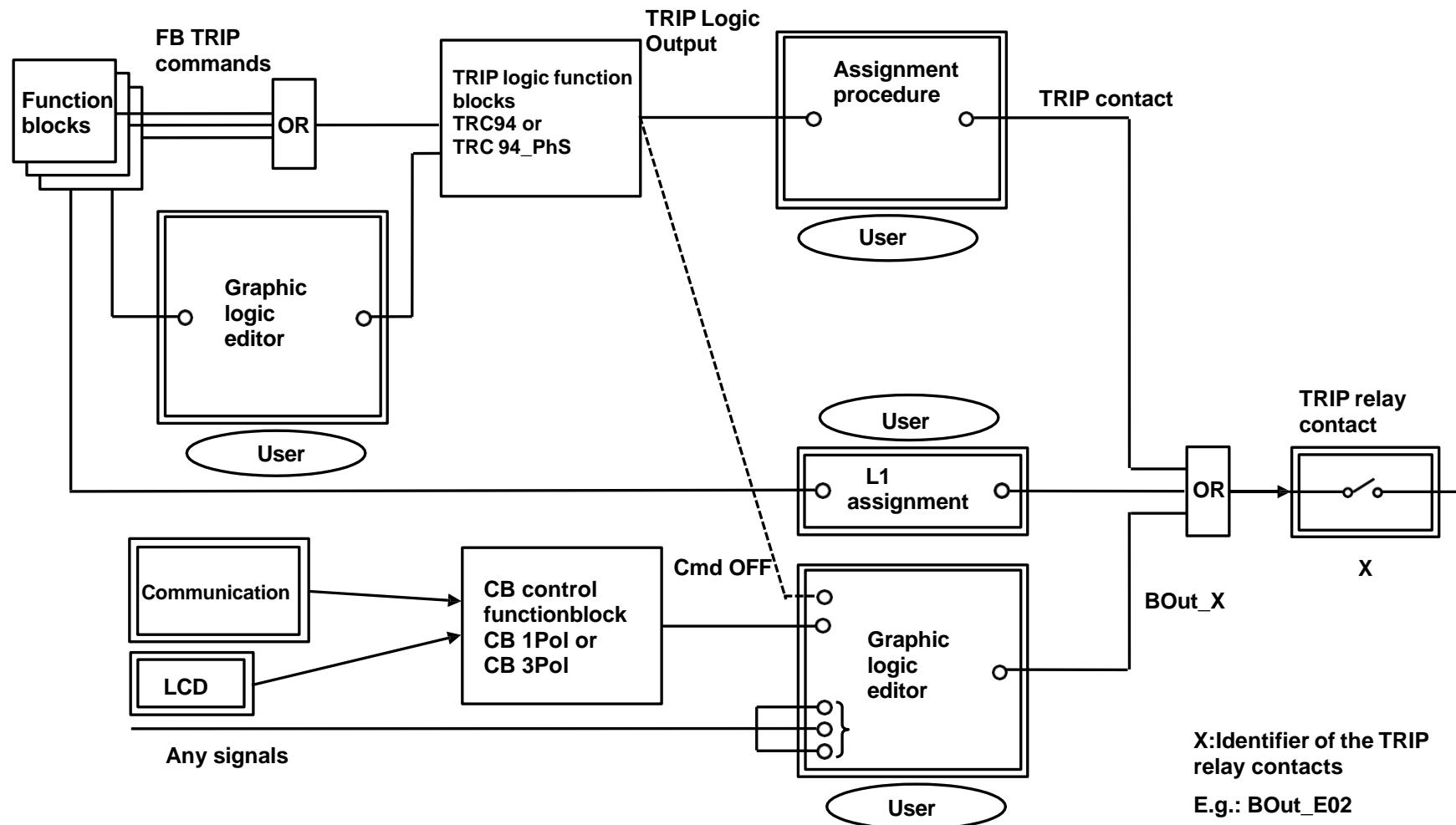
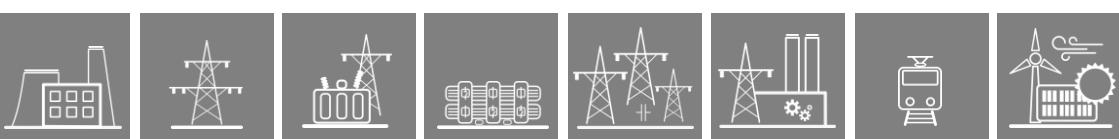



Figure 1-1 Principle of TRIP command processing

1.3.11.3.3. Application of TRIP relays for commands of fast protection functions

1.3.11.3.3.1. Aim of application of TRIP relays

The main aim of application of TRIP relays is to bypass the time delay of the mechanical contacts. For this aim there is a „slow” mechanical contact and a „fast” electronic switch in serial connection.

1.3.11.3.3.2. Control of the TRIP relays

The operation of the TRIP relays is performed in two steps:
Preparation of the circuit for the trip command Trip command generation

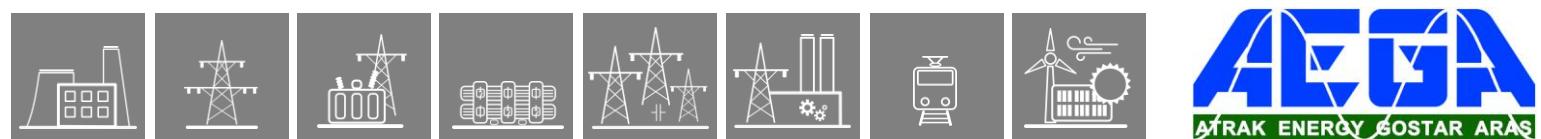
1.3.11.3.3.2.1. Preparation of the circuit for the trip command

At the time when a protection function detects violation of the setting value of the characteristic quantity, the preparation process closes the „slow” mechanical contact, preparing the circuit for command generation.

1.3.11.3.3.2.2. The trip command generation

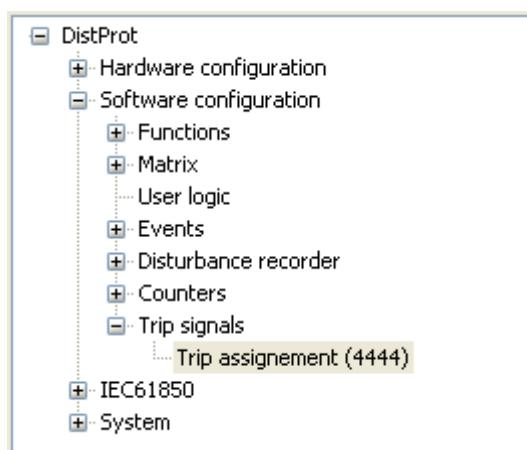
At the moment when the fast protection function – after some repeated checks, i.e. the timeout of the internal time counter – decides to generate the trip command then the „fast” electronic switch performs the operation, generating the trip command to the circuit breaker. This command is generated via the „TRC94_PhS” or via the simplified „TRC94” trip logic functionblocks.

NOTE: If the TRIP command is not received within the expected time delay, then the command preparation resets after 50 ms. When the device is tested in the laboratory e.g. for measuring the limits of the distance protection characteristic, this can result a cyclic closing and opening of the mechanical contact and rattling can be heard. This does not mean faulty operation of the device!

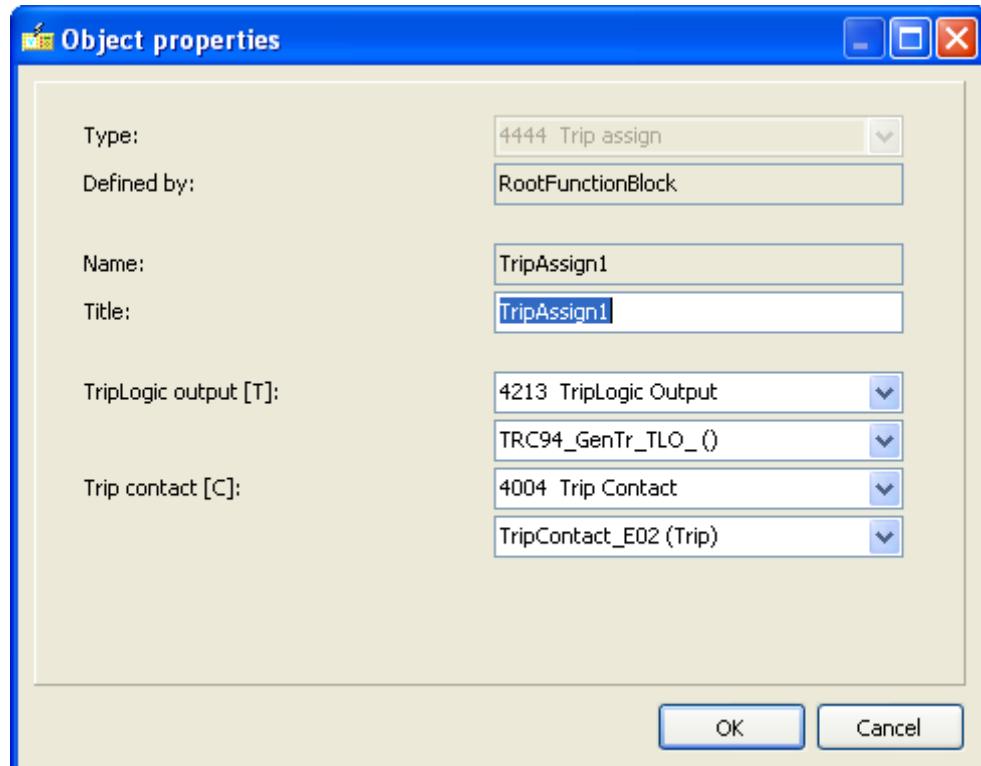

1.3.11.3.3.3. The factory programming for relay control

For the trip command of protection functions, where the requirement is the fast operation (distance protection first zone, line differential protection, transformer differential protection, fast overcurrent stage, synchronous switching, etc.) the process of preparation and command generation is programmed in the form of „Fast logic”.

The alignment of the TRIP command is the task of the “TRIP logic functionblock”. All devices operating with TRIP binary output module, has a configured TRC 94 simplified, or a TRC 94_PhS TRIP logic functionblock. This converts e.g. the trip command due to phase-to-phase fault to a three-phase trip command, or extends the duration of the command according to the parameter setting. All these are described in the dedicated document.


The fast TRIP commands are assigned to the TRIP relay output contacts according to the factory configuration, but the user has a possibility to modify or extend this assignment using the EuroCAP configuration software. The factory assignment is described in the user manual of the given device configuration.

To ensure fast operation, this „Fast logic” is performed in each sampling cycle (1ms).


1.3.11.3.3.4. Changing the TRIP command assignment

The user has a possibility to modify or extend the TRIP command assignment using the EuroCAP configuration software. The menu item to be started is shown in [Figure 2-1](#).

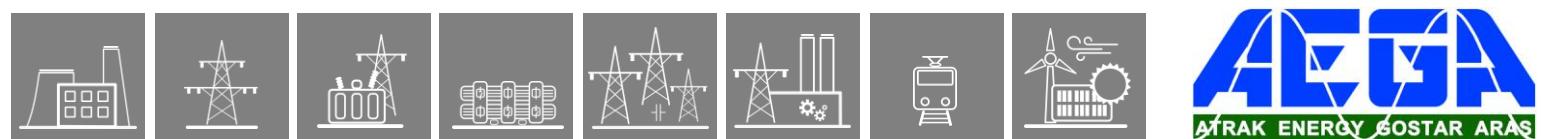


Figure 2-1 Menu item for TRIP command assignment

As [Figure 2-2](#) shows, the signal of type „TripLogic Output” (this is the command generated by the „TRIP logic functionblock”) can be assigned to a „Trip Contact” type relay output. The dialog window of the EuroCAP software selects these types of signals only; the available signals however can be assigned freely.

Figure 2-2 Changing the TRIP command assignment

The assigned signal is the input of an OR gate. As it is described below, several other signals can be directed to this OR gate. Using this method, also other TRIP modules extended by the user can be applied to operate the TRIP coil of the circuit breaker.

1.3.11.3.3.5. Fast operation of the relays

If the aim is to operate the contacts by a signal in each sampling cycle (1 ms), then the “Fast L1 contact option is to be applied. This option is provided by the EuroCAP configuration software in the menu „Hardware configuration/ IO signals/ Binary outputs/ Relay contacts/ Fast_L1 contacts”.

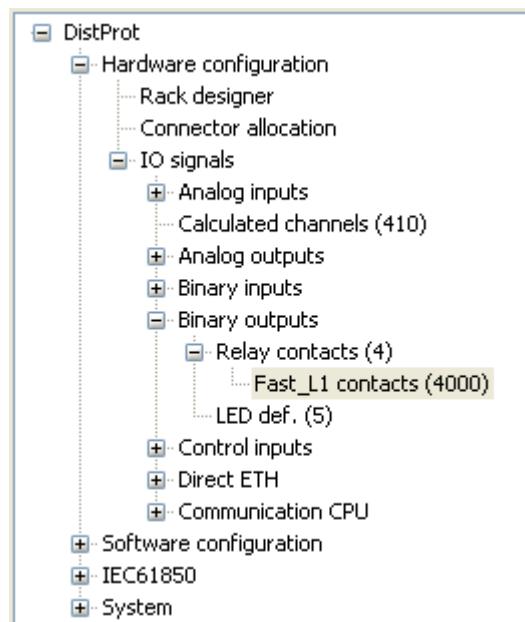


Figure 2-3 Configuring Fast L1 contacts

This menu offers the assignment of the appropriate binary signals to the relay contacts. As Figure 2-4 shows, the signal can be of several types.

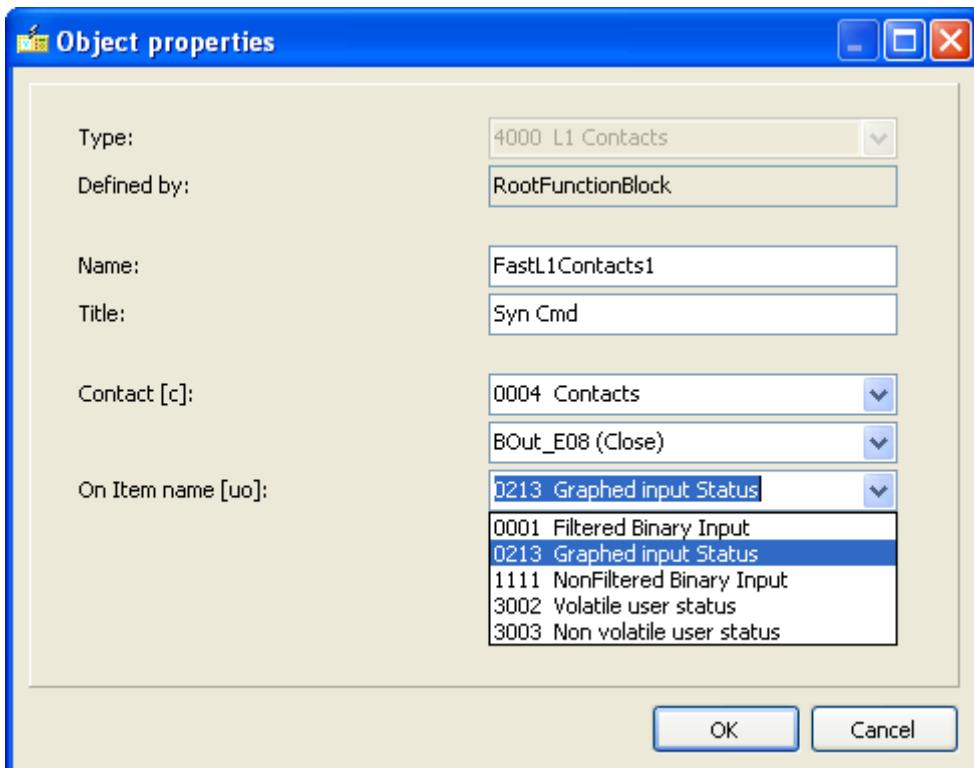
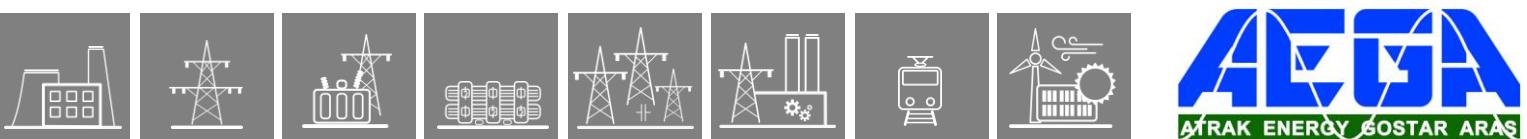
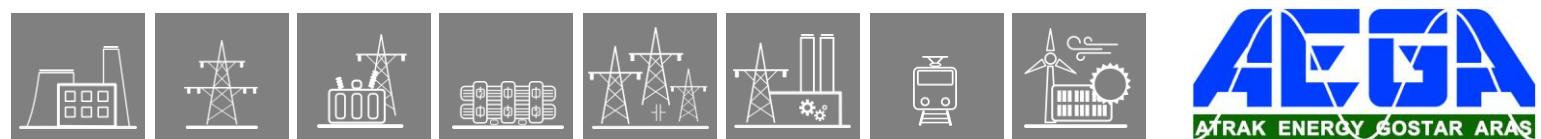



Figure 2-4 Fast L1 contact assignment

The processing of these fast signals is performed in a single step, the possibility for command preparation in the first step and additionally the TRIP command generation in the second step is not offered for the user. To perform this assignment, the application of the EuroCap configuration program in "Master" level is needed.

The selected signal is the input of an OR gate. To this gate additional other signals are connected, as it is described in the previous chapter, or in the description below.

IMPORTANT NOTE: The contacts of a TRIP hardware module are configured in the factory as "Fast L1 contacts", the user does not need to define them additionally!


1.3.11.3.4. User application of the TRIP relays

The contacts controlling the circuit breaker operation can be programmed also by the user. Additionally to the command of the factory configured protection functions the user can assign signals to the channels of the TRIP hardware module. The two steps for the command generation however, as it is described in the paragraph above, cannot be applied by the user.

In this case, the source of the signals can be:

- Pre-configured TRIP commands
 - Received from the SCADA system via communication channels,
 - Generated by the user, applying the front panel LCD of the device,
- Any additional binary signals, e.g. an external command received by the binary input module of the device.

The pre-configured TRIP commands are aligned by the "CB control functionblock", the output of which is the "CmdOff" TRIP command. This one and several other

signals can be programmed by the user to the output TRIP contact of the device, using the graphic logic editor of the EuroCAP configuration software.

Additionally the output signals of the „TRC94_PhS” trip logic or those of the „TRC94” simplified trip logic block can be programmed here. (These function-blocks are described in separate documents.) The output signal of the graphic logic editor is the „BOut_X” logic variable, where X is the identifier of the relay module and the contact, e.g. BOut_E02.

1.3.11.3.4.1. Graphic editor for the signal logic

For the protection functions, the operation of which are not required being extreme fast (in the range of one network period), the trip command must be assigned to the trip contacts usually by the user. These logic assignments can be programmed also in the factory, but the user can modify or extend them according to the requirements. To do this, the graphic editor of the EuroCap configuration tool must be applied with „Master” access rights.

1.3.11.3.4.2. The process of command generation

If a “simple” protection function generates a trip command then this logic signal is present on the dedicated output of the functionblock (see the description of the functionblocks).

The operation of the logic connections edited in the graphic editor is performed outside the sampling cycle, consequently, depending on the actual load of the processor a random time delay of additional 2-4 ms can be measured.

The contacts of the TRIP hardware modules are operated by several sources parallel:

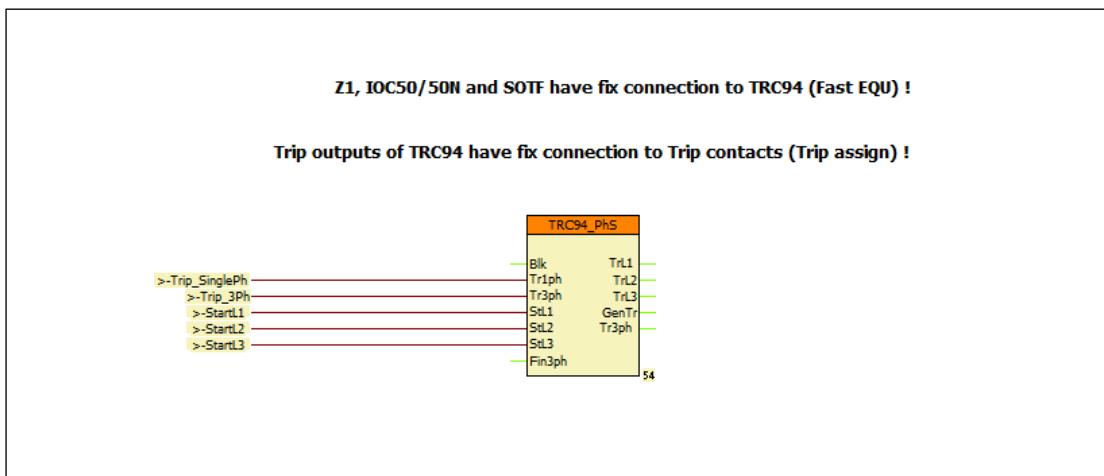
The high-speed factory configured fast protection functions,
The defined Fast L1 signals,
The graphically edited logic connections (programmed in the factory and editable also by the user).

1.3.11.3.5. Control of signal relay outputs

If there is no special requirement to generate the signal with high speed, i.e. a time delay of 2-4 ms can be tolerated between the intent to generate the signal and the closing of the output contact then it is sufficient to apply normal signal relay contacts. To perform this programming the graphic editor of the EuroCap configuration tool is to be applied. To perform the programming the „Master” access level is needed.

1.3.11.4. Examples

1.3.11.4.1. Application of the TRIP logic



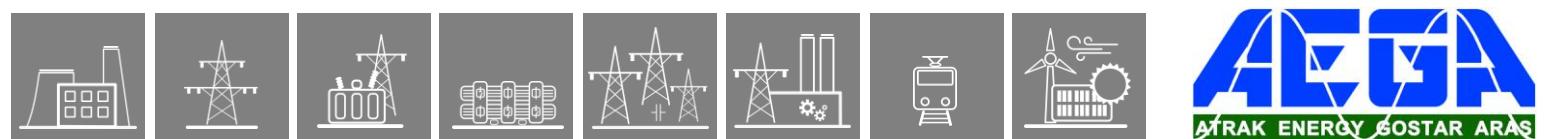

Figure 5-1 Example: A simple configuration to trip the circuit breaker

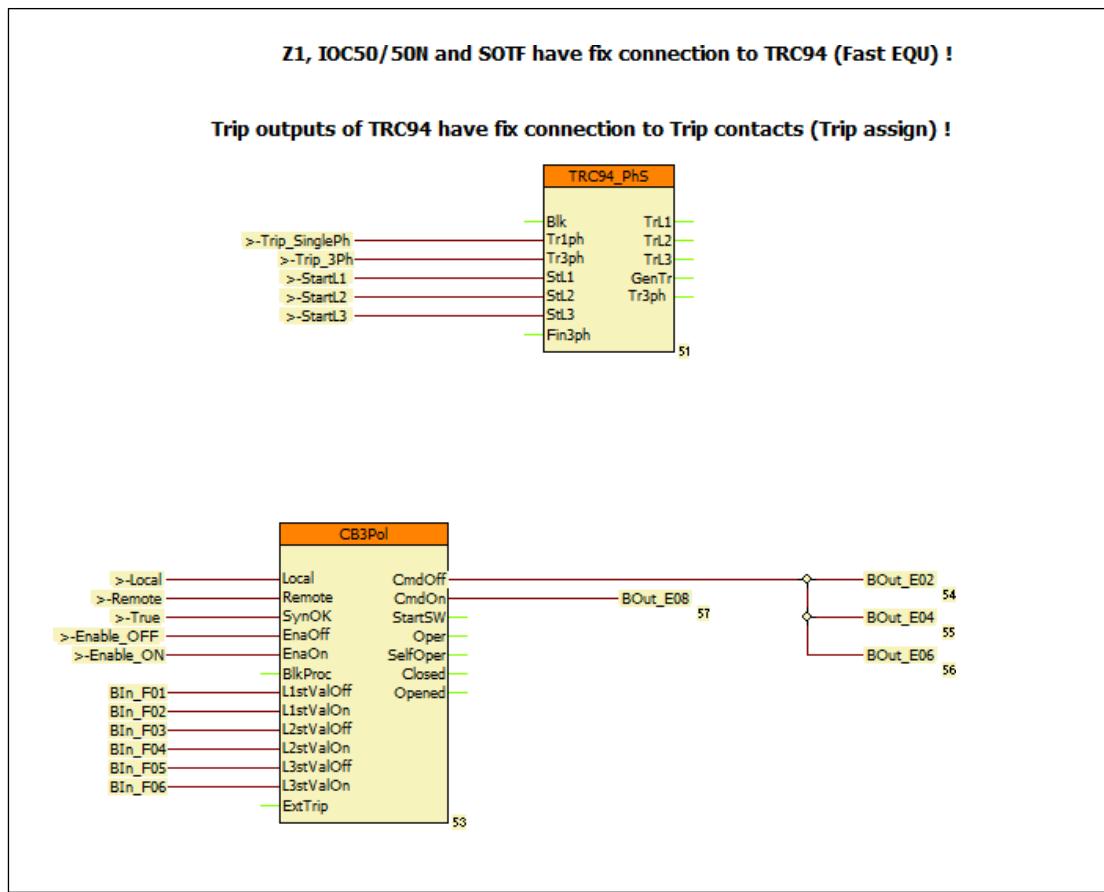
Figure 5-1 shows a simple configuration to trip the circuit breaker. In this Figure it is supposed that the fast protection functions operate according to the factory configuration and they control the TRIP contacts applying two steps of the preparation and command generation phases. This part of the program is not visible. (The description of the fast operating protection functions are listed in the configuration description of the devices.)

The outputs of the TRC94_PhS trip logic block are assigned to the channels of the TRIP hardware module. This assignment, which can be modified also by the user, is made not here but in the “TRIP assignment” menu of the EuroCAP configuration software. Consequently the Figure is complete; related to the outputs, the user needs additional graphic programming only if e.g. the operation is to be visualized also by signal relays.

If the configuration includes protection functions blocks the trip command of which does not need fast contact operation then these commands must be additionally directed to the TRIP relay outputs. To do this, the user collects these commands (with OR connection) and connects them to the dedicated inputs of the TRC94_PhS functionblock.

This Figure shows the collected signals (E.g. “Trip_SinglePh”, “Trip_3Ph”, etc.) only. As an example the „Trip_3Ph” signal collects the commands of all (not fast operating) protection functions which can generate three-phase trip command. The detailed description of the inputs and operation of the “TRC94_PhS” trip logic functionblock can be found in another document.

1.3.11.4.2. Application of circuit breaker control block



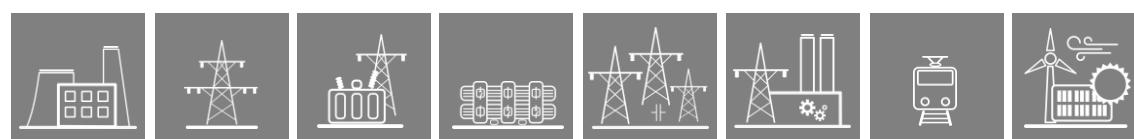
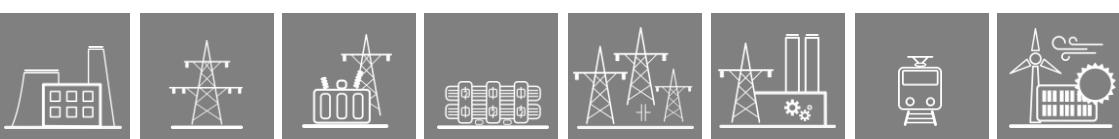

Figure 5-2 Example: Application of circuit breaker control block

Figure 5-2 shows an example for the application of the circuit breaker control block “CB3Pol”. In this Figure it is supposed that the fast protection functions operate according to the factory configuration and they control the TRIP contacts applying two steps of the preparation and command generation phases. This part of the program is not visible. (The description of the fast operating protection functions are listed in the configuration description of the devices.)

The outputs of the TRC94_PhS trip logic block are assigned to the channels of the TRIP hardware module. This assignment, which can be modified also by the user, is made not here but in the “TRIP assignment” menu of the EuroCAP configuration software. Consequently the Figure is complete; related to the outputs, the user needs additional graphic programming only if e.g. the operation is to be visualized also by signal relays.

If the configuration includes protection functions blocks the trip command of which does not need fast contact operation then these commands must be additionally connected to the TRIP relay outputs. To do this, the user collects these commands (with OR connection) and assigns them to the dedicated inputs of the TRC94_PhS functionblock.

This Figure shows the collected signals (E.g. “Trip_SinglePh”, “Trip_3Ph”, etc.) only. As an example the „Trip_3ph” signal collects the commands of all (not fast operating) protection functions which can generate three-phase trip command. The detailed description of the inputs and operation of the “TRC94_PhS” trip logic functionblock can be found in another document.



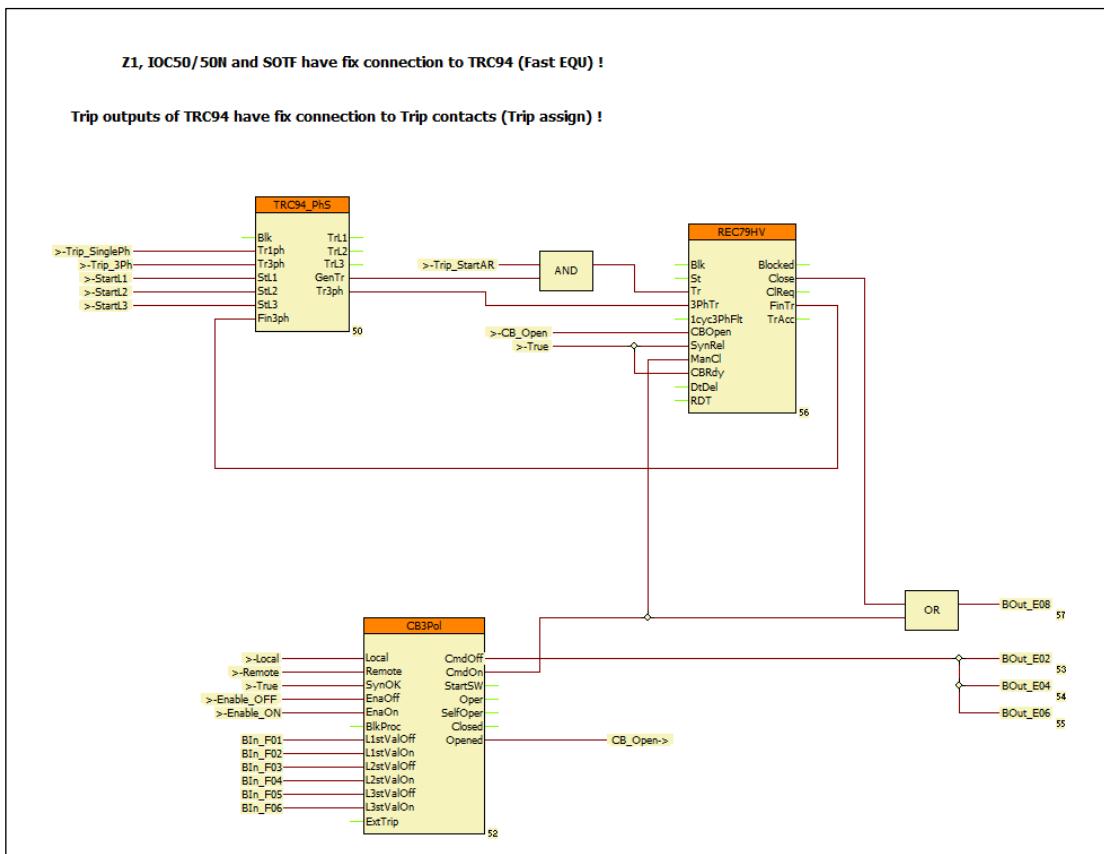
An extension to the example in *Figure 5-2* is that in this configuration also the „CB3pol” (circuit breaker control block) is applied. This block is needed if e.g. the front panel LCD of the device can display an active control scheme. For this purpose the signals „BIn_F...” in the Figure are the status signals of the circuit breaker poles, connected to the dedicated binary inputs of the device. The signals „Local”/„Remote” enable the local or remote control of the primary equipment. In the standard factory configurations these signals are programmed in the factory, but they can be modified also by the user.

If there is no synchro-check function activated in the device, connect the input „SynOK” of the „CB3Pol” to logic TRUE state. *Figure 5-2*, the local command issued via LCD of the device or the remote command received from the remote SCADA system is processed by the „CB3pol” functionblock (Output „CmdOff”). This control is programmed in the factory to „BOut_xx” variables. The user can perform any modification in the graphic programming.

The close command is connected directly to a dedicated „BOut_xx” variable. (This directs usually the fourth contact of the TRIP hardware module.)

The programming of the interlocking function must be performed by the user.

1.3.11.4.3. Automatic reclosing and circuit breaker control



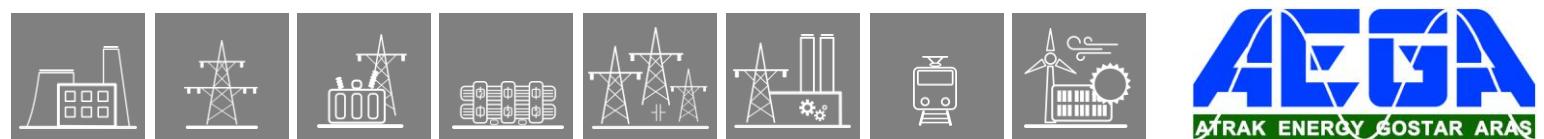

Figure 5-3 Example: Automatic reclosing and circuit breaker control

Figure 5-3 shows an example for the application of the automatic reclosing control block. In this Figure it is supposed that the fast protection functions operate according to the factory configuration and they control the TRIP contacts applying two steps of the preparation and command generation phases. This part of the program is not visible in "Master" level. (The description of the fast operating protection functions are listed in the configuration description of the devices.)

The outputs of the TRC94_PhS trip logic block are assigned to the output channels of the TRIP hardware module. This assignment, which can be modified also by the user, is made not here but in the "TRIP assignment" menu of the EuroCAP configuration software. Consequently the Figure is complete; related to the outputs, the user needs additional graphic programming only if e.g. the operation is to be visualized also by signal relays.

If the configuration includes protection functions blocks the trip command of which does not need fast contact operation then these commands must be additionally assigned to the TRIP relay outputs. To do this, the user collects these commands (with OR connection) and assigns them to the dedicated inputs of the TRC94_PhS functionblock.

This Figure shows the collected signals (E.g. "Trip_SinglePh", "Trip_3Ph", etc.) only. As an example the „Trip_3ph” signal collects the commands of all (not fast operating) protection functions which can generate three-phase trip command. The detailed description of the inputs and operation of the "TRC94_PhS" trip logic functionblock can be found in another document.

In this configuration also the „CB3pol” (circuit breaker control block) is applied. This block is needed if e.g. the front panel LCD of the device can display an active control scheme. For this purpose the signals „BIn_F...” in the Figure are the status signals of the circuit breaker poles, connected to the dedicated binary inputs of the device. The signals „Local”/”Remote” enable the local or remote control of the primary equipment. In the standard factory configurations these signals are programmed in the factory, but they can be modified also by the user.

If there is no synchro-check function activated in the device, connects the input „SynOK” of the “CB3Pol” to logic TRUE state.

According to *Figure 5-3*, the local command issued via LCD of the device or the remote command received from the remote SCADA system is processed by the „CB3pol” functionblock (Output „CmdOff”). This control is programmed in the factory to “BOut_xx” variables. The user can perform any modification in the graphic programming.

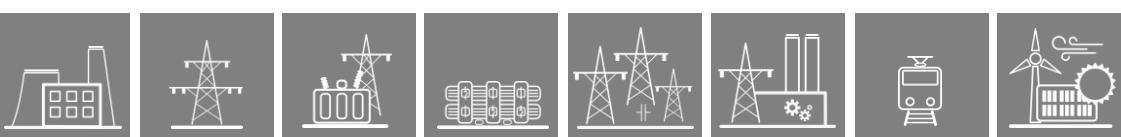
The close command is connected directly to a dedicated “BOut_xx” variable. (This directs usually the fourth contact of the TRIP hardware module.)

In *Figure 5-3* the close command is connected directly to a dedicated output. (This is usually the fourth contact of the TRIP hardware module.)

The programming of the interlocking function must be performed by the user.

An extension to the example in *Figure 5-2* is the application of the „REC79_HV” automatic reclosing function. The start signal „Trip_StartAR” can be programmed by the user. The automatic reclosing function is started only if the preceding trip command was performed by the circuit breaker, i.e. for example that the function is not disabled. The AND gate on this Figure performs this checking.

The „REC79_HV” automatic reclosing function needs the status signal indicating three-phase open state of the circuit breaker, connected to the „3PhTr” input of the „REC79_HV” functionblock. This signal is generated by the „TRC94_PhS” functionblock on the output „Tr3Ph”.


If the automatic reclosing is to be disabled after a fault caused by a manual close command, then the „CmdOn” output of the „CB3Pol” module must be connected to the „ManCl” input of the „REC79_HV” automatic reclosing function.

If there is no synchro-check function configured in the device, connect the „SynRel” input of the „REC79_HV” automatic reclosing function to logic TRUE state.

The evaluation of the status signals indicating the open state of the circuit breaker poles in OR gate is needed for the operation of the automatic reclosing function. According to the scheme of *Figure 5-3* the open state is indicated by at least one pole open state of the circuit breaker. (For simplicity, this Figure shows a realization without checking the FALSE signal of the closed states.)

Figure 5-3 supposes that the CB ready signal is not connected to the device; accordingly the steady TRUE state signal is connected to the „CBRdy” input of the „REC79_HV” automatic reclosing function. If the real signal is available, the signal must be connected similarly.

The close command of the „REC79_HV” automatic reclosing function is connected via OR gate to the dedicated close contact.

1.3.11.4.4. Closing the circuit breaker with synchro-check

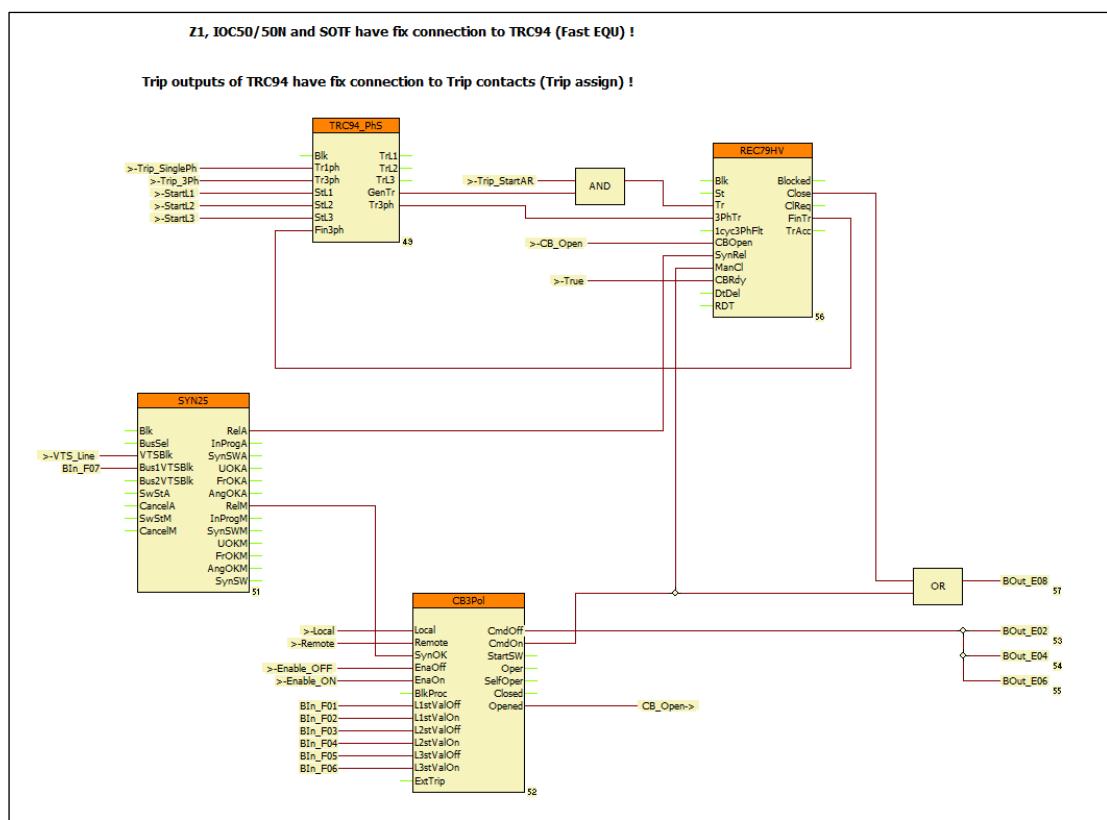



Figure 5-4 Example: closing the circuit breaker with synchro-check

Figure 5-4 shows an example for the application of “SYN25” synchro-check functionblock. In this Figure it is supposed that the fast protection functions operate according to the factory configuration and they control the TRIP contacts applying two steps of the preparation and command generation phases. This part of the program is not visible in “Master” level. (The description of the fast operating protection functions are listed in the configuration description of the devices.)

The outputs of the TRC94_PhS trip logic block are assigned to the output channels of the TRIP hardware module. This assignment, which can be modified also by the user, is made not here but in the “TRIP assignment” menu of the EuroCAP configuration software. Consequently the Figure is complete; related to the outputs, the user needs additional graphic programming only if e.g. the operation is to be visualized also by signal relays.

If the configuration includes protection functions blocks the trip command of which does not need fast contact operation then these commands must be additionally assigned to the TRIP relay outputs. To do this, the user collects these commands (with OR connection) and assigns them to the dedicated inputs of the TRC94_PhS functionblock.

This Figure shows the collected signals (E.g. “Trip_SinglePh”, “Trip_3Ph”, etc.) only. As an example the „Trip_3ph” signal collects the commands of all (not fast operating) protection functions which can generate three-phase trip command. The detailed description of the inputs and operation of the “TRC94_PhS” trip logic functionblock can be found in another document.

In this configuration also the „CB3pol” (circuit breaker control block) is applied. This block is needed if e.g. the front panel LCD of the device can display an active control scheme. For this purpose the signals „BIn_F...” in the Figure are the status signals of the circuit breaker poles, connected to the dedicated binary inputs of the device. The signals „Local”/„Remote” enable the local or remote control of the primary equipment. In the standard factory configurations these signals are programmed in the factory, but they can be modified also by the user.

According to *Figure 5-4*, the local command issued via LCD of the device or the remote command received from the remote SCADA system is processed by the „CB3pol” functionblock (Output „CmdOff”). This control is programmed in the factory to “BOut_xx” variables. The user can perform any modification in the graphic programming.

The close command is connected directly to a dedicated “BOut_xx” variable. (This directs usually the fourth contact of the TRIP hardware module.)

In *Figure 5-4* the close command is connected directly to a dedicated output. (This is usually the fourth contact of the TRIP hardware module.)

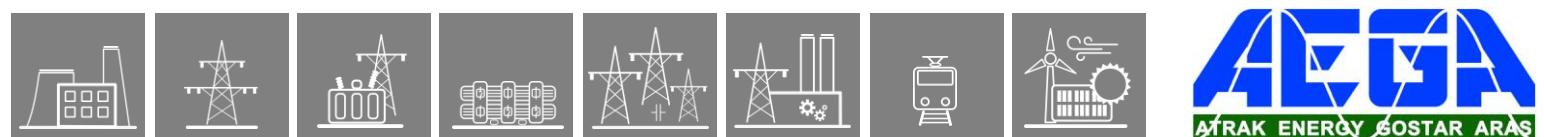
The programming of the interlocking function must be performed by the user.

Figure 5-4 includes the application of the „REC79_HV” automatic reclosing function. The start signal „Trip_StartAR” can be programmed by the user. The automatic reclosing function is started only if the preceding trip command was performed by the circuit breaker, i.e. for example that the function is not disabled. The AND gate on this Figure performs this checking.

The „REC79_HV” automatic reclosing function needs the status signal indicating three-phase open state of the circuit breaker, connected to the „3PhTr” input of the „REC79_HV” functionblock. This signal is generated by the „TRC94_PhS” functionblock on the output „Tr3Ph”.

If the automatic reclosing is to be disabled after a fault caused by a manual close command, then the „CmdOn” output of the „CB3Pol” module must be connected to the „ManCl” input of the „REC79_HV” automatic reclosing function.

The evaluation of the status signals indicating the open state of the circuit breaker poles in OR gate is needed for the operation of the automatic reclosing function. According to the scheme of *Figure 5-4* the open state is indicated by at least one pole open state of the circuit breaker. (For simplicity, this Figure shows a realization without checking the FALSE signal of the closed states.)


Figure 5-4 supposes that the CB ready signal is not connected to the device; accordingly the steady TRUE state signal is connected to the „CBRdy” input of the „REC79_HV” automatic reclosing function. If the real signal is available, the signal must be connected similarly.

The close command of the „REC79_HV” automatic reclosing function is connected via OR gate to the dedicated close contact.

An extension to the example in *Figure 5-3* is the close command to the circuit breaker is generated by synchro-check. The enabling signal for the close command is generated by the „SYN25” software module. This module is described in details in a separate document. The needed input signals indicating the state of the voltage transformers („VTSBlk” and „Bus1VTSBlk”), must be programmed graphically.

The output signal „RelA” of the „SYN25” software module enables the closing operation of the „REC79_HV” automatic reclosing function via its „SynRel” input.

For manual close commands the output signal „RelM” of the „SYN25” software module enables the closing operation of the „CB3pol” via its „SynOK” input.

1.3.11.4.5. Closing the circuit breaker with synchro-check and synchro-switch

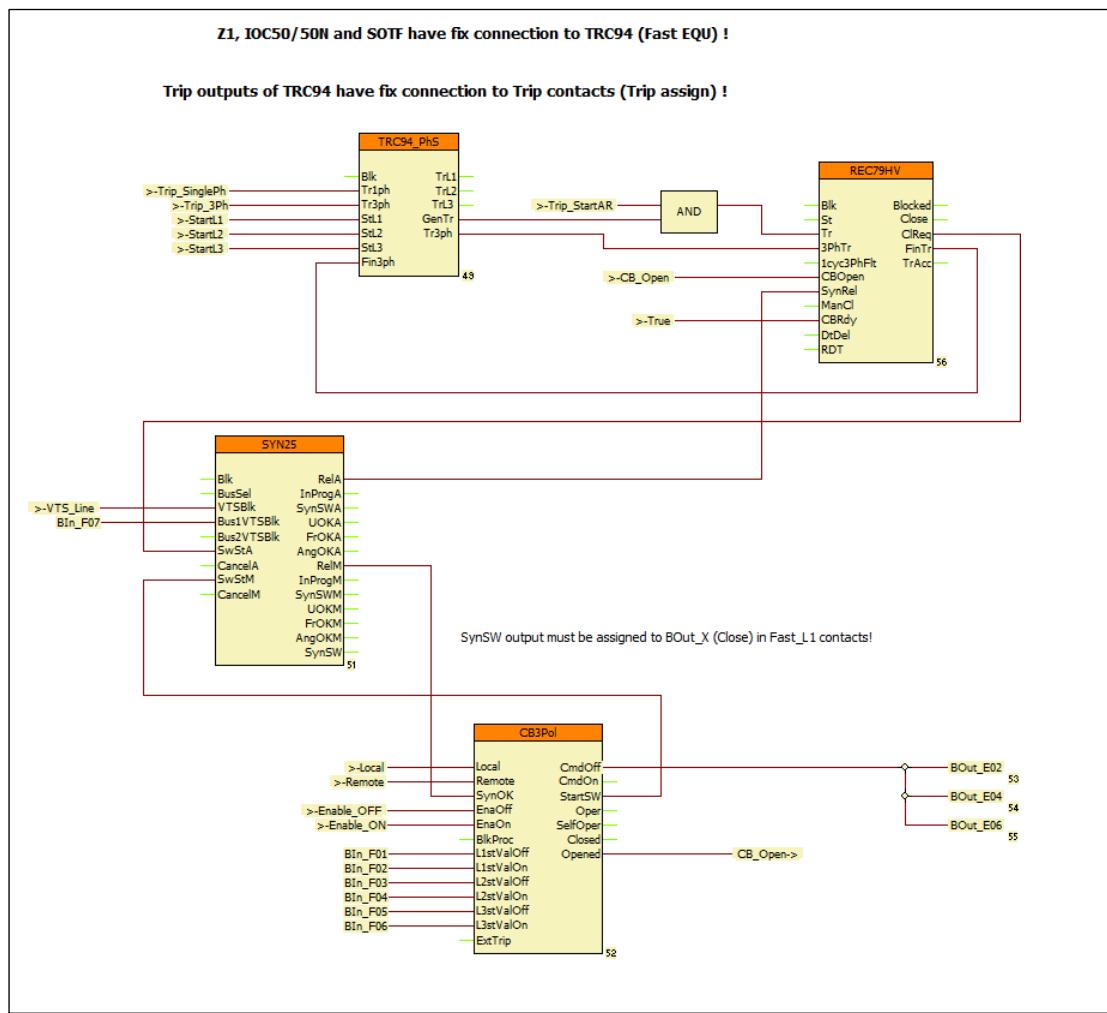



Figure 5-5 Example: closing the circuit breaker with synchro-check and synchro- switch

Figure 5-5 shows an example for the application of “SYN25” synchro-check functionblock with synchro switch extension. In this Figure it is supposed that the fast protection functions operate according to the factory configuration and they control the TRIP contacts applying two steps of the preparation and command generation phases. This part of the program is not visible in “Master” level. (The description of the fast operating protection functions are listed in the configuration description of the devices.)

The outputs of the TRC94_PhS trip logic block are assigned to the output channels of the TRIP hardware module. This assignment, which can be modified also by the user, is made not here but in the “TRIP assignment” menu of the EuroCAP configuration software. Consequently the Figure is complete; related to the outputs, the user needs additional graphic programming only if e.g. the operation is to be visualized also by signal relays.

If the configuration includes protection functions blocks the trip command of which does not need fast contact operation then these commands must be additionally assigned to the TRIP relay outputs. To do this, the user collects these commands

(with OR connection) and assigns them to the dedicated inputs of the TRC94_PhS functionblock.

This Figure shows the collected signals (E.g. "Trip_SinglePh", "Trip_3Ph", etc.) only. As an example the „Trip_3ph" signal collects the commands of all (not fast operating) protection functions which can generate three-phase trip command. The detailed description of the inputs and operation of the "TRC94_PhS" trip logic functionblock can be found in another document.

In this configuration also the „CB3pol" (circuit breaker control block) is applied. This block is needed if e.g. the front panel LCD of the device can display an active control scheme. For this purpose the signals „BIn_F..." in the Figure are the status signals of the circuit breaker poles, connected to the dedicated binary inputs of the device. The signals „Local"/"Remote" enable the local or remote control of the primary equipment. In the standard factory configurations these signals are programmed in the factory, but they can be modified also by the user.

According to *Figure 5-5*, the local command issued via LCD of the device or the remote command received from the remote SCADA system is processed by the „CB3pol" functionblock (Output „CmdOff"). This control is programmed in the factory to "BOut_xx" variables. The user can perform any modification in the graphic programming.

The close command is connected directly to a dedicated "BOut_xx" variable. (This directs usually the fourth contact of the TRIP hardware module.)

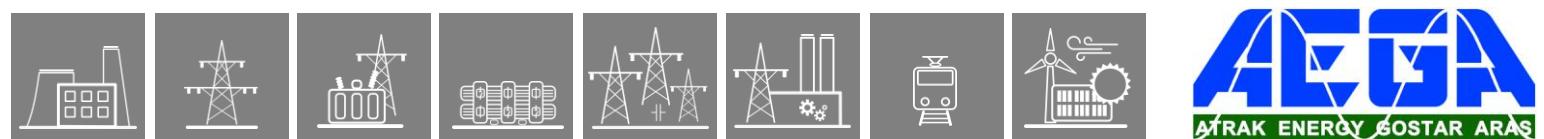
In *Figure 5-5* the close command is connected directly to a dedicated output. (This is usually the fourth contact of the TRIP hardware module.)

The programming of the interlocking function must be performed by the user.

Figure 5-5 includes the application of the „REC79_HV" automatic reclosing function. The start signal „Trip_StartAR" can be programmed by the user. The automatic reclosing function is started only if the preceding trip command was performed by the circuit breaker, i.e. for example that the function is not disabled. The AND gate on this Figure performs this checking.

The „REC79_HV" automatic reclosing function needs the status signal indicating three-phase open state of the circuit breaker, connected to the „3PhTr" input of the „REC79_HV" functionblock. This signal is generated by the „TRC94_PhS" functionblock on the output „Tr3Ph".

If the automatic reclosing is to be disabled after a fault caused by a manual close command, then the „CmdOn" output of the „CB3Pol" module must be connected to the „ManCl" input of the „REC79_HV" automatic reclosing function.


If there is no synchro-check function configured in the device, then connect the „SynRel" input of the „REC79_HV" automatic reclosing function to logic TRUE state.

The evaluation of the status signals indicating the open state of the circuit breaker poles in OR gate is needed for the operation of the automatic reclosing function. According to the scheme of *Figure 5-5* the open state is indicated by at least one pole open state of the circuit breaker. (For simplicity, this Figure shows a realization without checking the FALSE signal of the closed states.)

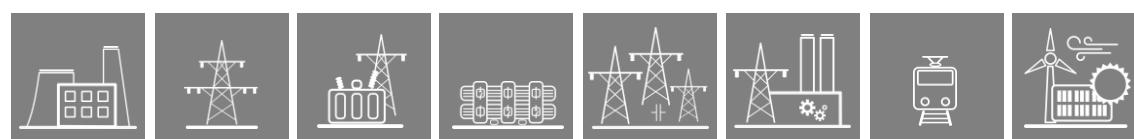
Figure 5-5 supposes that the CB ready signal is not connected to the device; accordingly the steady TRUE state signal is connected to the „CBRdy" input of the „REC79_HV" automatic reclosing function. If the real signal is available, the signal must be connected similarly.

The close command of the „REC79_HV" automatic reclosing function is connected via OR gate to the dedicated close contact.

In this application the close command to the circuit breaker is generated by synchro- check. The enabling signal for the close command is generated by the „SYN25" software module. This module is described in details in a separate document. The

needed input signals indicating the state of the voltage transformers („VTSBlk” and „Bus1VTSBlk”), must be programmed graphically.

The output signal „RelA” of the „SYN25” software module enables the closing operation of the „REC79_HV” automatic reclosing function via its „SynRel” input.


For manual close commands the output signal „RelM” of the „SYN25” software module enables the closing operation of the „CB3pol” via its „SynOK” input.

An extension to the example in *Figure 5-4* is the following: If there is no continuous synchron state because the frequency at one side of the circuit breaker is different to that of the other side, then the voltage vector of one side rotates continuously as compared to the other one. In this case a synchronous switching is attempted to restore the normal operation of the network.

The manual synchron switching mode is started by the signal on the „StSwM” input of the SYN25 functionblock. To do this the „StartSW” output of the „CB3Pol” functionblock must be connected here.

For automatic synchron switching mode the „CIReq” output of the „Rec79HV” module must be connected to the „SwStA” input of the „SYN25” software module.

IMPORTANT NOTE: the close command is generated for both manual and automatic switching at the output „SynSW” of the „SYN25” software module. It is advised not to connect this output using the „slow” graphic programming, but the contact assigned to the close command („BOutClose”) must be handled as fast operating „L1 contact”. The „SynSW” signal must be programmed to this contact. This assignment is performed using the EuroCap configuration tool in the menu „Hardware configuration/Binary outputs/Relay contacts/Fast_L1 contacts”.

1.3.12. RTD input module

The RTD+1100 module is used to measure the temperature through the variation of resistance of temperature detectors. RTD+0200 and RTD+1200 are special modules for Petersen coil controllers (DRL) measuring the resistance of the potentiometer.

Connector types:

- The default and optionally available connector types are indicated for each module in the table below. See Chapter [20.2](#) for details about each type.

MODULE TYPE	RTD+/0200*	RTD+/1100	RTD+/1200*
CHANNEL NUMBER	1	4	1
MEASUREMENT METHOD	3 wire configuration	2, 3 or 4 wire configuration	3 wire configuration
ACCURACY	$\pm 0.5\% \pm 1$ digit	$\pm 0.5\% \pm 1$ digit	$\pm 0.5\% \pm 1$ digit
SENSOR TYPE	Service-Ohm	Pt100/Ni100 Ni120/Ni120US Pt250/Ni250 Pt1000/Ni1000 Cu10 Service-Ohm (60 Ω ... 1.6 k Ω)	Service-Ohm
MEASUREMENT RANGES	2 Ω ... 200 Ω	- 50 °C – +150 °C	10 Ω ... 1000 Ω
CONNECTOR TYPE	<u>Default:</u> BLA <u>Options:</u> -	<u>Default:</u> BLA <u>Options:</u> T	<u>Default:</u> BLA <u>Options:</u> -
RECOMMENDED APPLICATION	Arc suppression coil controller	General resistance-based temperature measurement	Arc suppression coil controller

*Special module

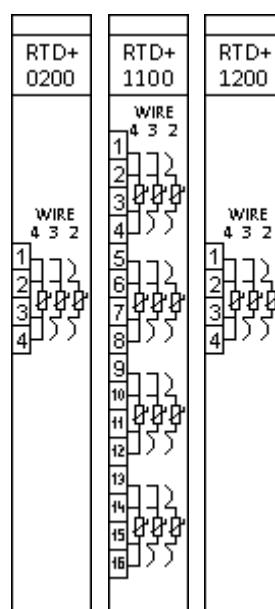
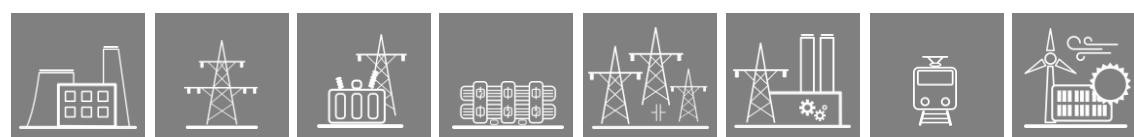



Figure 10-1 RTD input modules

1.3.12.1. RTD module wiring

If 2-wire wiring is used you have to make sure that the value of RA and RD resistors are set correctly in the “parameters” menu of the web server.

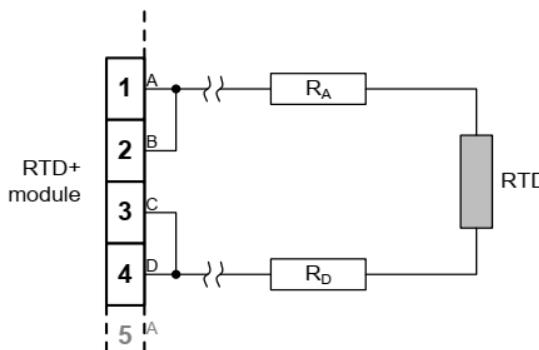


Figure 10-2 2-wire RTD wiring

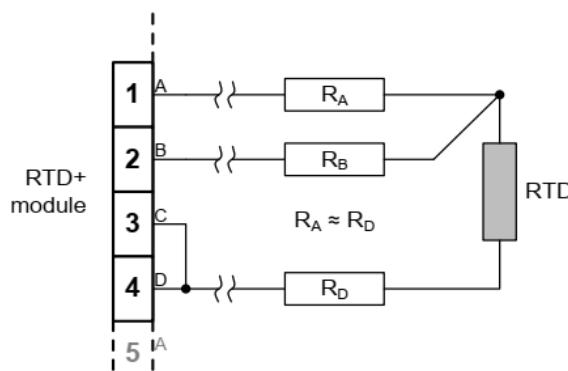


Figure 10-3 3-wire RTD wiring

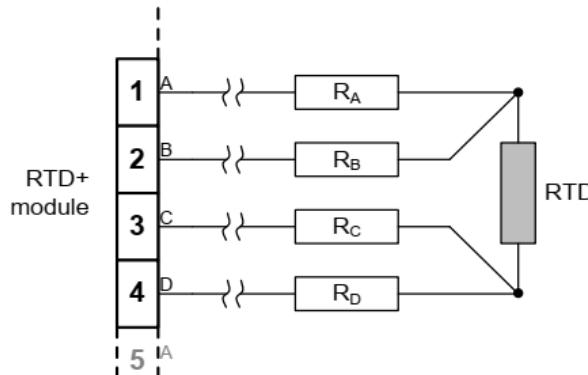


Figure 10-4 4-wire RTD wiring

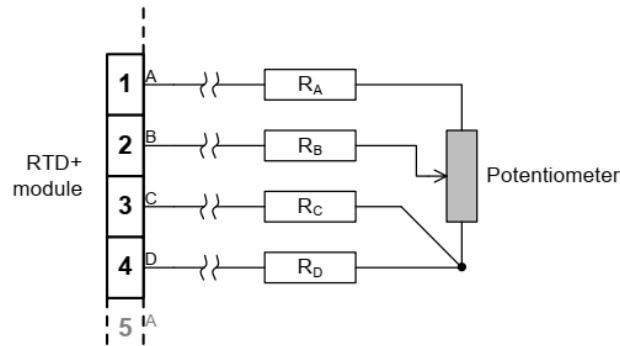


Figure 10-5 4-wire RTD wiring of potentiometer

1.3.13. Analog input module (AI)

The analog input module accepts transducers' current outputs. The AIC module can measure unipolar and bipolar current values in wide ranges.

Connector types:

- The default and optionally available connector types are indicated for each module in the table below. See Chapter 20.2 for details about each type.

MODULE TYPE	AIC+/0200*	AIC+/0201*	AIC+/0202
CHANNEL NUMBER	4	4	4
MEASUREMENT METHOD	2 wire inputs	2 wire inputs with optional 12 V excitation	2 wire inputs
RELATIVE ACCURACY	$\pm 0.5\% \pm 1$ digit	$\pm 0.5\% \pm 1$ digit	$\pm 0.5\% \pm 1$ digit
MEASUREMENT RANGES	± 20 mA (typical 0-20, 4-20 mA) $R_{LOAD} = 56 \Omega$	± 20 mA (typical 0-20, 4-20 mA) $R_{LOAD} = 56 \Omega$	± 20 mA (typical 0-20, 4-20 mA) $R_{LOAD} = 56 \Omega$
CONNECTOR TYPE	Default: BLA Options: -	Default: BLA Options: -	Default: BLA Options: F, T

*Obsolete module. These modules are not recommended for new designs!

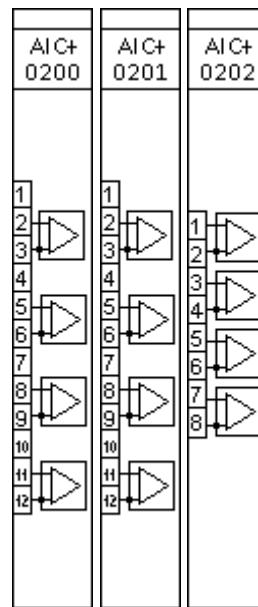


Figure 11-1 Analog input modules

1.3.13.1. AI module wiring

The following wiring method can be applied.

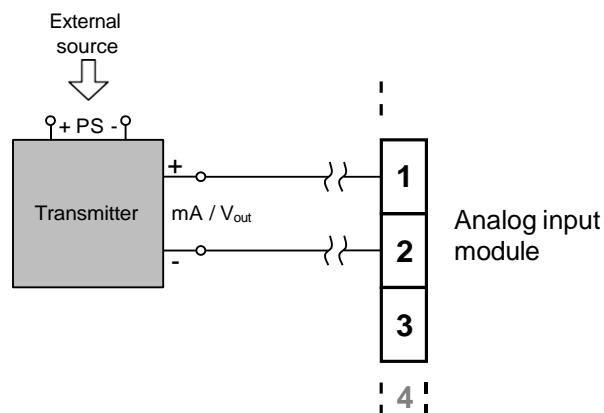


Figure 11-2 AI wiring

1.3.14. Analog output module (ATO)

The analog output module transmits current or voltage signals. The ATO module can be used in wide ranges in unipolar and bipolar mode.

Connector types:

- The default and optionally available connector types are indicated for each module in the table below. See Chapter [20.2](#) for details about each type.

MODULE TYPE	ATO+/0002	ATO+/0004
CHANNEL NUMBER	2	4
OUTPUT MODE	2 wire output	2 wire output
MAXIMUM LOAD ($R_{CABLE} + R_{RECEIVER}$)	500 Ω	500 Ω
OUTPUT RANGES	± 20 mA 0 - 20 mA 4 - 20 mA	± 20 mA 0 - 20 mA 4 - 20 mA
CONNECTOR TYPE	Default: BLA Options: T	Default: BLA Options: -

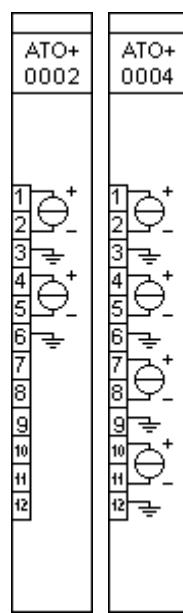


Figure 12-1 Analog output modules

1.3.14.1. ATO module wiring

The analog output module should be connected according to the following wiring diagram.

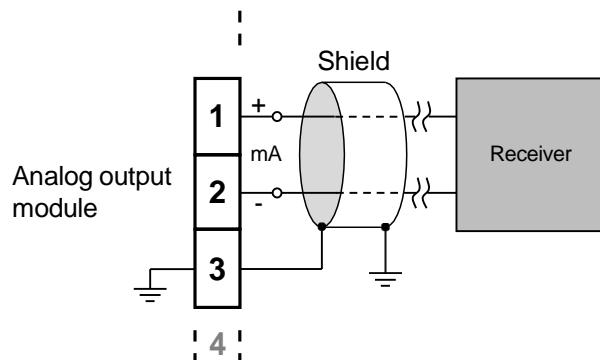
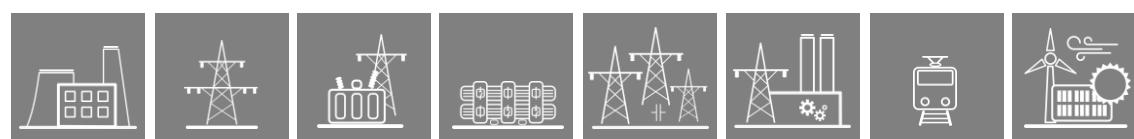



Figure 12-2 Analog output module wiring diagram

1.3.15. Sensor input module

The sensor modules receive low-level signals of current and voltage sensors (low-power instrument transformers).

Connector types:

- The default and optionally available connector types are indicated for each module in the table below. See Chapter [20.2](#) for details about each type.

MODULE TYPE	CVS+/0001		CVSR+/0001		VS+/0031***
CHANNEL NUMBER	4 U	4 I	4 U	4 I	4 U
NOMINAL VALUES	3.25 V	0.225 V*	1.27 V	0.150 V**	3.25 V
CONTINUOUS VOLTAGE WITHSTAND	35 V DC		35 V DC		35 V DC
SHORT TIME OVERLOAD (1 s)	40 V AC / 56 V DC		40 V AC / 56 V DC		40 V AC / 56 V DC
MAX. MEASURED VALUE ($\pm 10\%$)	1.8 U_N	50 I_N	2.1 U_N	50 I_N	1.6 U_N
ACCURACY	$\leq 0.5\% (0.1 U_N - 1.2 U_N)$		$\leq 0.5\% (0.1 U_N - 1.2 U_N)$		$\leq 0.5\% (0.1 U_N - 1.2 U_N)$
FREQUENCY RANGE	DC – 1 kHz		DC – 1 kHz		DC – 1 kHz
INPUT RESISTANCE	200 k Ω $\pm 1\%$	21 k Ω $\pm 1\%$	10 M Ω $\pm 1\%$	1.1 M Ω $\pm 1\%$	200 k Ω $\pm 1\%$
INPUT CAPACITANCE	300 pF (1 kHz)	300 pF (1 kHz)	300 pF (1 kHz)	300 pF (1 kHz)	300 pF (1 kHz)
CONNECTOR TYPE	RJ45 – 8 pole, shielded connector, isolated shielding		RJ45 – 8 pole, shielded connector, grounded shielding		M8 3-pin connector Receptacle: Hirschmann ELST 3308 RV FM 8 05 Plug: Binder 768 99- 3360-00-03

*Voltage proportional to current

**Voltage proportional to current change (Rogowski coil)

***Obsolete module. These modules are not recommended for new designs!

For more information about more available nominal values please contact our Application Team.
(application@protecta.hu)

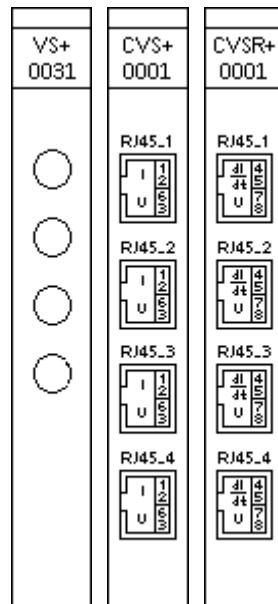
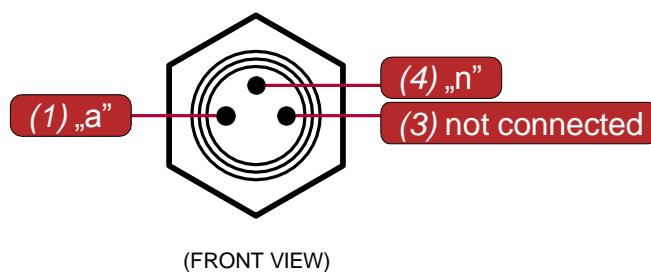
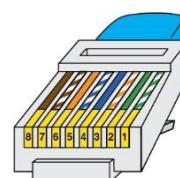




Figure 13-1 Voltage sensor modules

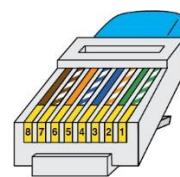

(FRONT VIEW)

Figure 13-2 M8 connector pinout

- 1.: S1
- 2.: S2
- 3.: "a"
- 6.: "n"

Figure 13-3 CVS module connector pinout

- 4.: S1
- 5.: S2
- 8.: "n"
- 7.: "a"

Figure 13-4 CVSR module connector pinout

1.3.16. INJ module

Complex module for controlling the Petersen coil, which contains an injector function for the measurements, an enabling and a blocking input, and a fault relay indicating if there is any fault in the injection circuit.

Connector types:

- The default and optionally available connector types are indicated for each module in the table below. See Chapter 20.2 for details about each type.

MODULE TYPE	INJ+/0005	INJ+/0015*
INJECTED CURRENT	2 A	4 A
ENABLING INPUT CLAMP VOLTAGE	85 V AC	Not available function
BLOCKING INPUT CLAMP VOLTAGE	200 V AC	200 V AC
ADDITIONAL RESISTANCE FOR VOLTAGE INPUT	Not available function	265 kΩ ± 1%
CONNECTOR TYPE	<u>Default:</u> STVS6, BLA10 <u>Options:</u> -	
RECOMMENDED APPLICATION	Arc suppression coil controller	Network compensation level measurement on resonant grounded networks

*Special module

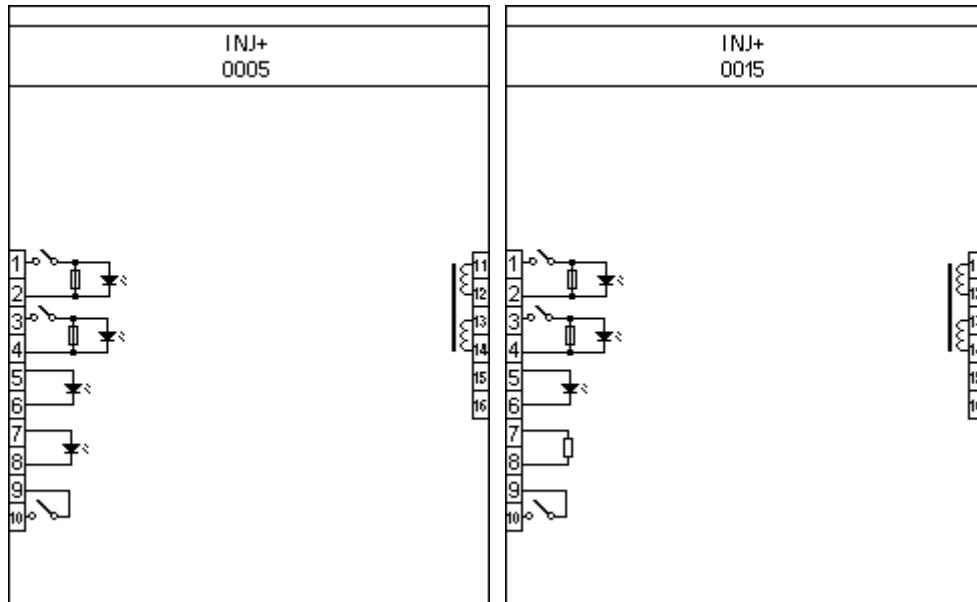


Figure 14-1 INJ modules

1.3.17. Generator protection modules

Special generator protection modules whose system measures and produces the necessary analog signals.

Connector types:

- The default and optionally available connector types are indicated for each module in the tables below. See Chapter 20.2 for details about each type.

MODULE TYPE	RAI+/01	RAI+/11	RINJ+/21
NOMINAL VOLTAGE	-	-	110 V / 220 V
INPUT VOLTAGE RANGE	-	-	88 - 264 V DC 80 - 250 V AC
OUTPUT VOLTAGE	-	-	100V DC ± 2 %
MEASUREMENT RANGE	± 20 mA	± 20 mA	-
THERMAL WITHSTAND CONTINUOUS: 30 SEC:	15 mA 20 mA	10 mA 20 mA	20 mA
CONNECTOR TYPE	<u>Default:</u> STVS8 <u>Options:</u> -	<u>Default:</u> STVS8 <u>Options:</u> T*	<u>Default:</u> STVS8 <u>Options:</u> T*
RECOMMENDED APPLICATION	Rotor earth-fault protection of middle-grounded rotors	Rotor earth-fault protection of ungrounded (isolated) rotors	Rotor earth-fault protection of ungrounded (isolated) rotors

*By choosing this option, the connector remains the same, only the handle is changed

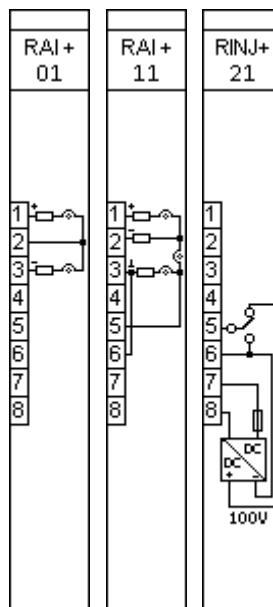


Figure 15-1 Generator protection modules

1.3.17.1. Auxiliary boxes for rotor earth fault protection

These DIN-rail mounted external boxes serve as couplings between the rotor (exciter circuit) of the generator and the corresponding RAI module of the protection device.

Note: the data about the resistances and capacitors provided here does not tell the actual time constants of the measured values, as those can be determined on-site only, when the rotor earth fault protection is being tested on the actual generator itself.

MODULE TYPE	RAI+01 BOX	RAI+11 BOX BASE	RAI+11 BOX EXTENSION*
MAXIMUM INPUT VOLTAGE	200 V, 300 V, 400 V, 500 V**	600 V	1200 V
SERIES RESISTANCE ON SIDES	10 kΩ, 15 kΩ, 20 kΩ, 25 kΩ**	35 kΩ	30 kΩ
FILTER CAPACITORS	4x10 µF	2x1 µF	-
CONNECTOR TYPE	<u>Default:</u> STVS6 <u>Options:</u> -	<u>Default:</u> STVS6 <u>Options:</u> -	<u>Default:</u> STVS6 <u>Options:</u> -
RECOMMENDED APPLICATION	Middle-grounded rotors	Ungrounded (isolated) rotors	Ungrounded (isolated) rotors

*This extension module can only be used together with RAI+11 BOX BASE module

**According to the chosen wiring

1.3.17.1.1. Use of auxiliary boxes

- Ungrounded (isolated) rotors:

If the excitation voltage is lower than 600 V, then it is enough to use the RAI+11 BOX BASE auxiliary box. If the excitation voltage is higher than 600 V, the RAI+11 BOX EXTENSION auxiliary box shall be used *additionally*, so the protection can connect to up to 1200 V excitation voltage.

- Middle-grounded rotors

Front drawings near the connectors on the box itself indicate the available maximum voltages. The choice from these shall be made according to the excitation voltage. Wiring shall be done according to the chosen voltage.

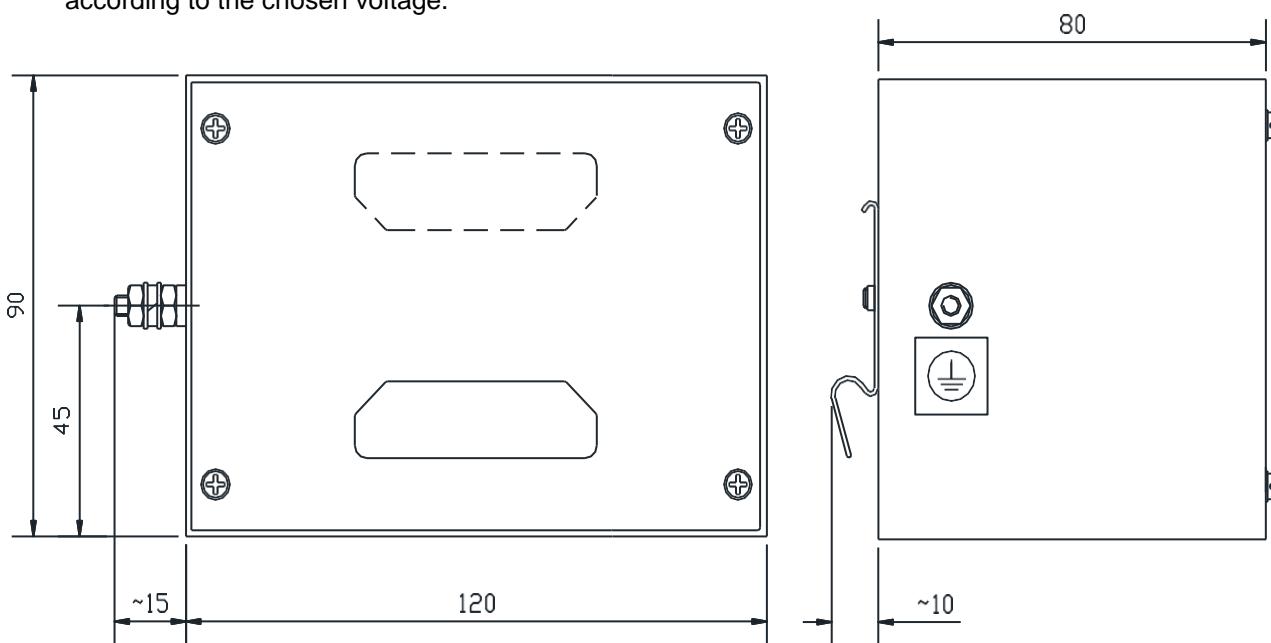
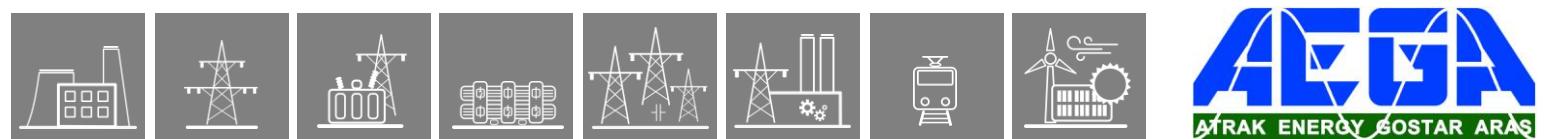



Figure 15-2 Size of the auxiliary boxes

1.3.17.2. Wiring of the rotor earth fault protection modules

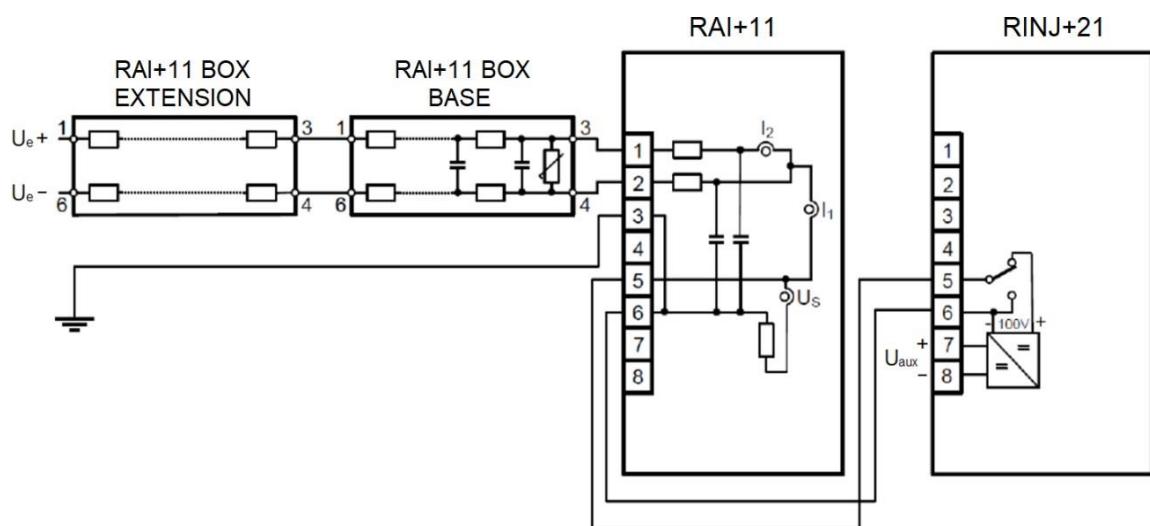


Figure 15-3 Wiring for ungrounded (isolated) rotors

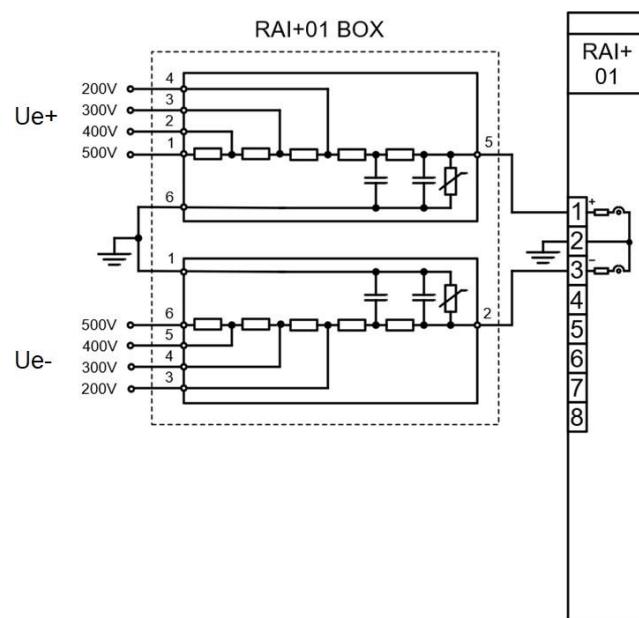
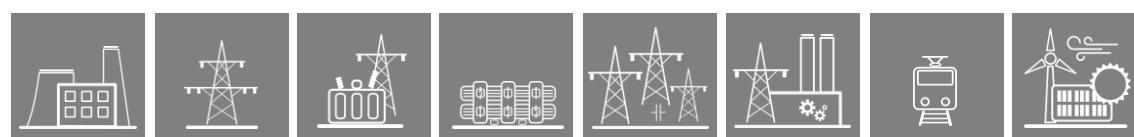


Figure 15-4 Wiring for middle-grounded rotors

1.3.18. Power supply module

The power supply module converts primary AC and/or DC voltage to required system voltages. In most applications, one power supply module is sufficient to provide the required power to the system. Redundant power supply modules extend system availability in case of the outage of any power source.

IMPORTANT


Depending on the hardware configuration, the power consumption of the devices can be different. We reserve the right to make the decision about which PS+ module must be used.

For most applications where the power consumption does not reach 20 W, a 4 HP wide PS+ module shall be installed.

Connector types:

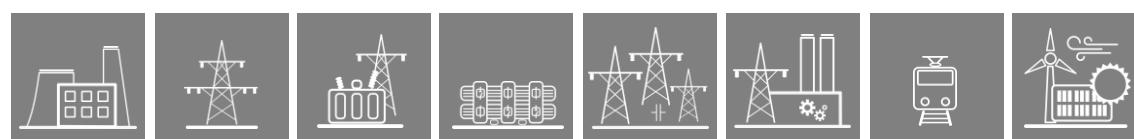
- The default and optionally available connector types are indicated for each module in the tables below. See Chapter [20.2](#) for details about each type.

MODULE TYPE	PS+/4201 (4 HP wide)	PS+/2101 (4 HP wide)
RATED VOLTAGE	24 V DC / 48 V DC / 60 V DC	110 V DC / 220 V DC
INPUT VOLTAGE OPERATIVE RANGE	19.2 - 72 V DC	88 - 264 V DC 80 - 250 V AC
NOMINAL POWER	20 W	20 W
VOLTAGE DIP WITHSTAND AT 80% UN → 0% INPUT VOLTAGE CHANGE (IEC 60255-26)	50 ms	100 ms
INTERNAL FUSE	3.15A/250V	3.15A/250V
CONNECTOR TYPE	<u>Default:</u> BLA <u>Options:</u> T	<u>Default:</u> BLA <u>Options:</u> F, T

IMPORTANT

Devices with 20W or higher power consumption shall be equipped with an 8 HP wide PS module.

MODULE TYPE	PS+/1301	PS+/1303**	PS+/2301	PS+/2303**	PS+/1030*
RATED VOLTAGE	110 V DC	110 V DC	220 V DC	220 V DC	110 V DC / 220 V DC
INPUT VOLTAGE OPERATIVE RANGE	88 - 132 V DC 85 - 130 V AC	88 - 150 V DC 85 - 130 V AC	176 - 264 V DC 160 - 250 V AC	176 - 264 V DC 160 - 250 V AC	88 - 264 V DC 85 - 250 V AC
MAX. CONTINUOUS POWER OUTPUT	30 W	30 W	30 W	30 W	25 W
VOLTAGE DIP WITHSTAND AT 80% UN → 0% INPUT VOLTAGE CHANGE (IEC 60255-26)	50 ms 100 ms at 100%Un → 0%	20 ms 100 ms at 100%Un → 0%			
INTERNAL FUSE	2.5A/250V	2.5A/250V	2.5A/250V	2.5A/250V	2.5A/250V
CONNECTOR TYPE	<u>Default: BLA</u> <u>Options: -</u>	<u>Default: BLA</u> <u>Options: -</u>	<u>Default: BLA</u> <u>Options: -</u>	<u>Default: BLA</u> <u>Options: -</u>	<u>Default: BLA</u> <u>Options: F, T</u>


*Special module, available only in custom configurations.

**Can be connected in parallel.

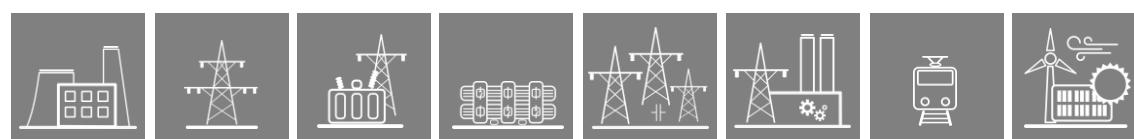
MODULE TYPE	PS+/1060*	PS+/1601	PS+/1602*	PS+/2601	PS+/4301***
RATED VOLTAGE	110 V DC / 220 V DC	110 V DC	110 V DC	220 V DC	48 V DC
INPUT VOLTAGE OPERATIVE RANGE	88 - 264 V DC 95 - 130 V AC	88 - 132 V DC 95 - 130 V AC	88 - 132 V DC 95 - 130 V AC	176 - 264 V DC 160 - 250 V AC	38.4 - 57.6 V DC
MAX. CONTINUOUS POWER OUTPUT	60 W	60 W	60 W	60 W	25 W
VOLTAGE DIP WITHSTAND AT 80% UN → 0% INPUT VOLTAGE CHANGE (IEC 60255-26)	20 ms 100 ms at 100%Un → 0%	50 ms 100 ms at 100%Un → 0%	50 ms 100 ms at 100%Un → 0%	50 ms 100 ms at 100%Un → 0%	20 ms 30 ms at 100%Un → 0%
INTERNAL FUSE	3.15A/250V	2.5A/250V	2.5A/250V	2.5A/250V	3.15A/250V
CONNECTOR TYPE	<u>Default: BLA</u> <u>Options: F, T</u>	<u>Default: BLA</u> <u>Options: -</u>	<u>Default: BLA</u> <u>Options: F</u>	<u>Default: BLA</u> <u>Options: T</u>	<u>Default: BLA</u> <u>Options: -</u>

*Special module, available only in custom configurations. PS+/1602 supports **auxiliary voltage measurement**. The module is calibrated to DC voltage measurement.

***Obsolete module. These modules are not recommended for new designs!

MODULE TYPE	PS+/2161*	PS+/2164**	PS+/4261*	PS+/4264**
RATED VOLTAGE	110 V DC / 220 V DC	110 V DC / 220 V DC	24 V DC / 48 V DC / 60 V DC	24 V DC / 48 V DC / 60 V DC
INPUT VOLTAGE OPERATIVE RANGE	88 - 264 V DC	88 - 264 V DC	19.2 - 72 V DC	19.2 - 72 V DC
MAX. CONTINUOUS POWER OUTPUT	60 W	60 W	60 W	60 W
VOLTAGE DIP WITHSTAND AT 80% UN → 0% INPUT VOLTAGE CHANGE (IEC 60255-26)	40 ms	40 ms	40 ms	40 ms
INTERNAL FUSE	3.15A/250V	3.15A/250V	8A/250V	8A/250V
CONNECTOR TYPE	<u>Default:</u> BLT <u>Options:</u> -	<u>Default:</u> BLT <u>Options:</u> -	<u>Default:</u> BLT <u>Options:</u> -	<u>Default:</u> BLT <u>Options:</u> -

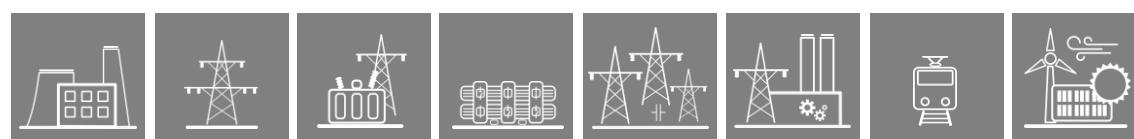
*Can be connected in parallel. **Can be connected in parallel and supports **auxiliary voltage measurement**.


MODULE TYPE	PS+/4401**	PS3F+/1001*
RATED VOLTAGE	48 V DC / 60 V DC	3x100 V AC (line voltage)
INPUT VOLTAGE OPERATIVE RANGE	38.4 - 72 V DC	80 - 120 V AC
MAX. CONTINUOUS POWER OUTPUT	30 W	20 W
VOLTAGE DIP WITHSTAND AT 80% UN → 0% INPUT VOLTAGE CHANGE (IEC 60255-26)	20 ms 30 ms at 100%Un → 0%	50 ms 100 ms at 100%Un → 0%
INTERNAL FUSE	3.15A/250V	2.5A/250V
CONNECTOR TYPE	<u>Default:</u> BLA <u>Options:</u> F, T	<u>Default:</u> BLA <u>Options:</u> -

***Special module.** At least 2 healthy phase voltages are needed for the operation of the PS3F+/1001 module. LEDs on the front of the module indicate the presence of healthy phase voltages. For the correct internal signals connect the common point of the suppling 3 phase voltage to the 4th connector ("N").

****Can be connected in parallel.**

Main features:


- Fault relay contacts (NC and NO): device fault contact and also assignable to user functions. All the three relay contact points are accessible to users.
- Redundant applications (nominal power and reliability can be increased by using parallel power supplies)
- On-board self-supervisory circuits: temperature and voltage monitors
- Short-circuit-protected outputs
- Efficiency: > 70 %, power consumption = nominal power / efficiency
- Passive heatsink

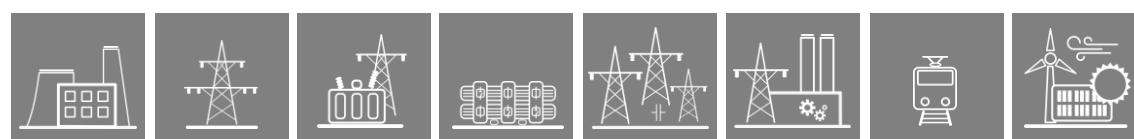
- Early power failure indication signals to the CPU for the possibility of power outage, thus the CPU has enough time to save the necessary data to non-volatile memory
- Inrush current (until 0.1 s): < 10 A for all types excluding PS+4401 which has < 21 A inrush current.
- Common features for internal fuses:
 - 5 mm x 20 mm (0.20" x 0.79")
 - TT characteristics (very inverse time-lag)
 - 35 A @ 250 V AC rated breaking capacity
- Recommended external protection: miniature circuit breaker, 6 A (C char.)

Figure 16-1 Power supply modules

1.3.19. Sampling synchronization module

The IED sampling system is synchronized via this module to an external source (IRIG-B) in PMU (Phasor Measurement Unit) applications. The PLL of the module handles the setting of the phase and frequency if valid IRIG-B signal is received. Note that the sampling signal is generated even if the IRIG-B signal is not present, however in that case, it runs independently.

MODULE TYPE	TSYNC+/0071
IRIG-B TYPE	B000 (unmodulated)
INPUT TYPE	BNC (coaxial)
SIGNAL THRESHOLD	5 VDC CMOS max. 5.5 VDC
MAX. CABLE LENGTH	50 m
CLAMP VOLTAGES	falling 1.7 VDC rising 3.1 VDC
SAMPLING ACCURACY*	< 100 ns
IRIG SYNCH. TIME	max. 1 minute
HOLDOVER TIME**	30 s
SAMPLING FREQUENCY	2 kHz @ 50 Hz 2.4 kHz @ 60 Hz
SAMPLING ACCURACY IN INDEPENDENT MODE***	< 1 ppm


*max. time difference between synchronized systems connecting to different GNSS (e.g. GPS)

**the sampling accuracy stays below the given value during this time if the IRIG-B signal is lost

***the accuracy of the 2/2.4 kHz sampling signal if an IRIG-B signal is not present

Figure 17-1 Sampling synchronization module

1.3.20. Mixed function modules

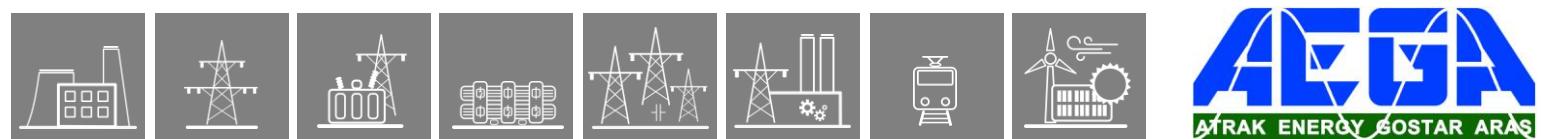
1.3.20.1. PSTP+ module

IMPORTANT

PSTP+ modules can be used only if the power consumption of the device does not reach 20 W and maximum 2 TRIP contacts are needed. If the application does not meet any of these two requirements, it is not allowed to use these cards. In this case separate PS+ (Chapter 16) and TRIP+ (Chapter 9) modules must be used.

Connector types:

- The default and optionally available connector types are indicated for each module in the tables below. See Chapter 20.2 for details about each type.


Note for the following tables:

- **Thermal withstand voltage:** continuous with 60 % of the input channels are energized.

MODULE TYPE	PSTP+/2101	PSTP+/2102*	PSTP+/2131**
POWER SUPPLY CHARACTERISTICS			
RATED VOLTAGE	110 V / 220 V	110 V / 220 V	110 V / 220 V
INPUT VOLTAGE OPERATIVE RANGE	88 - 264 V DC 80 - 250 V AC	88 - 264 V DC 80 - 250 V AC	88 - 264 V DC 80 - 250 V AC
MAXIMUM CONTINUOUS POWER OUTPUT	20 W	20 W	20 W
VOLTAGE DIP DURATION AT 0% RESIDUAL VOLTAGE (IEC 60255-26)	min. 100 ms in the specified input voltage range	min. 100 ms in the specified input voltage range	min. 100 ms in the specified input voltage range
INTERNAL FUSE	3.15A/250V	3.15A/250V	3.15A/250V
CONNECTOR TYPE	Default: BLA Options: F, T	Default: BLA Options: F, T	Default: BLA Options: T
TRIPPING CHARACTERISTICS			
CHANNEL NUMBER	2	2	2
RATED VOLTAGE	110 V DC and 220 V DC or dry contacts	110 V DC and 220 V DC or dry contacts	110 V DC and 220 V DC or dry contacts
THERMAL WITHSTAND VOLTAGE	242 V DC	242 V DC	242 V DC
CONTINUOUS CARRY	8 A	8 A	8 A
MAKING CAPACITY	0.5 s, 30 A	0.5 s, 30 A	0.5 s, 30 A
BREAKING CAPACITY	L/R = 40 ms: 4 A DC	L/R = 40 ms: 4 A DC	L/R = 40 ms: 4 A DC
CONNECTOR TYPE	Default: BLA Options: F, T	Default: BLA Options: F, T	Default: BLA Options: T

*Special module that supports auxiliary voltage measurement. The module is calibrated to DC voltage measurement.

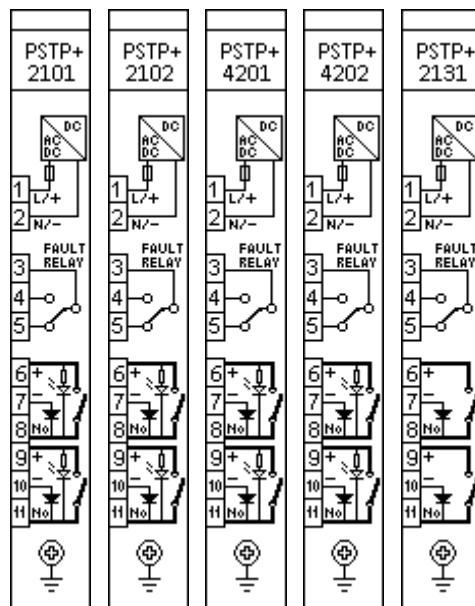
**Without trip circuit supervision

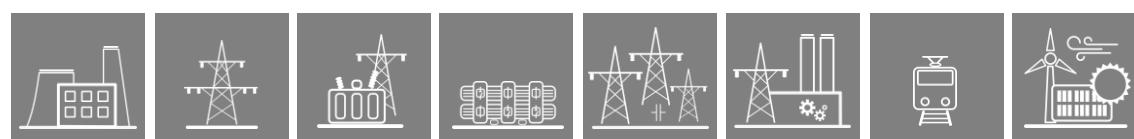
MODULE TYPE	PSTP+/4201	PSTP+/4202*
POWER SUPPLY CHARACTERISTICS		
RATED VOLTAGE	24 V / 48 V / 60 V	24 V / 48 V / 60 V
INPUT VOLTAGE OPERATIVE RANGE	19.2 - 72 V DC	19.2 - 72 V DC
MAXIMUM CONTINUOUS POWER OUTPUT	20 W	20 W
VOLTAGE DIP DURATION AT 0% RESIDUAL VOLTAGE (IEC 60255-26)	50 ms at nominal input voltages min. 40 ms in the specified input voltage range	50 ms at nominal input voltages min. 40 ms in the specified input voltage range
INTERNAL FUSE	3.15A/250V	3.15A/250V
CONNECTOR TYPE	Default: BLA Options: T	Default: BLA Options: T
TRIPPING CHARACTERISTICS		
CHANNEL NUMBER	2	2
RATED VOLTAGE	24 V DC and 48 V DC or dry contacts	24 V DC and 48 V DC or dry contacts
THERMAL WITHSTAND VOLTAGE	72 V DC	72 V DC
CONTINUOUS CARRY	8 A	8 A
MAKING CAPACITY	0.5 s, 30 A	0.5 s, 30 A
BREAKING CAPACITY	L/R = 40 ms: 4 A DC	L/R = 40 ms: 4 A DC
CONNECTOR TYPE	Default: BLA Options: T	Default: BLA Options: T

*Special module that supports **auxiliary voltage measurement**. The module is calibrated to DC voltage measurement.

Main features:

- High-speed operation: with pre-trip 0.5 ms, without pre-trip typically 10 ms, maximally 22 ms.
- Trip circuit supervision for each trip contact
- 1 unit wide (4 HP) modules
- Inrush current (until 0.1 s): < 10 A
- Common features for internal fuses:
 - 5 mm x 20 mm (0.20" x 0.79")
 - TT characteristics (very inverse time-lag)
 - 35 A @ 250 V AC rated breaking capacity
- Recommended external protection: miniature circuit breaker, 6 A (C char.)




Figure 18-1 Power supply with 2 Ch. TRIP modules

1.3.20.1.1. Trip Circuit Supervision (TCS) in PSTP modules

Apart from the PSTP+/2131, all PSTP modules have TCS.

The technical data of the TCS in PSTP modules:

	MODULE TYPE PSTP+/4201 PSTP+/4202	PSTP+/2101 PSTP+/2102
INJECTED CURRENT AT "NO" CONTACT	1.5 mA	1.5 mA
MAXIMUM RESISTANCE OF THE TRIP COIL	3-WIRE WIRING (1 mA CURRENT) 8 kΩ (max. 8 V)	13 kΩ (max. 13 V)
	3-WIRE WIRING IN PARALLEL 4 kΩ (max. 8 V)	6.5 kΩ (max. 13 V)
	2-WIRE METHOD (1 mA MIN. CURRENT) 24 kΩ @ 24 V DC 48 kΩ @ 48 V DC 60 kΩ @ 60 V DC	110 kΩ @ 110 V DC 220 kΩ @ 220 V DC

IMPORTANT

PSR2+ modules can be used only if the power consumption of the device does not reach 20 W and maximum 2 contacts are needed. If the application does not meet any of these two requirements it is not allowed to use these cards. In this case separate PS+ (Chapter [16](#)) and Signaling (Chapter [8](#)) modules must be used.

1.3.20.2. PSR2+ module

Connector types:

- The default and optionally available connector types are indicated for each module in the table below. See Chapter [20.2](#) for details about each type.

MODULE TYPE	PSR2+/2101
POWER SUPPLY CHARACTERISTICS	
RATED VOLTAGE	110 V / 220 V
INPUT VOLTAGE OPERATIVE RANGE	88 - 264 V DC 80 - 250 V AC
MAXIMUM CONTINUOUS POWER OUTPUT	20 W
VOLTAGE DIP DURATION AT 0% RESIDUAL VOLTAGE (IEC 60255-26)	min. 100 ms in the specified input voltage range
INTERNAL FUSE	3.15A/250V
CONNECTOR TYPE	<u>Default: BLA</u> <u>Options: T</u>
SIGNALING RELAY CHARACTERISTICS	
CHANNEL NUMBER	2
RATED VOLTAGE	250 V AC/DC
CONTINUOUS CARRY	8 A
MAKING CAPACITY	0.5 s, 30 A
CONNECTOR TYPE	<u>Default: BLA</u> <u>Options: T</u>

Main features (according to IEC 60255-26):

- Maximum switching voltage: 400 V AC
- Breaking capacity: (L/R=40 ms) at 220 V DC: 0.2 A, at 110 V DC: 0.3 A
- Breaking capacity max.: 2000 VA
- Short time carrying capacity: 1 s, 35 A
- Limiting making current, max. 4 s: 15 A (df = 10 %)
- Dielectric strength between open contacts, 1 min: 1000 V_{RMS}
- Mechanical endurance: 10×10^6 cycles
- Circuit closing capability: typically 10 ms, maximally 22 ms.
- Bounce time: typically 6,5 ms, maximally 10 ms.
- Minimal switching requirement: 5 V

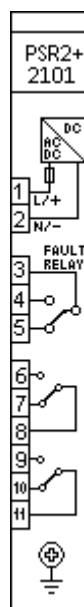
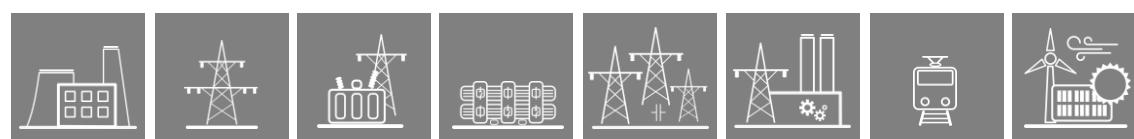


Figure 18-2 Power supply with 2 Ch. signaling modules

1.3.20.3. O6R5+ module

The O6R5+ module contains 6 binary input channels in one grounding group, and 5 relay outputs with 2×2 NO contacts and one CO contact.


Connector types:

- The default and optionally available connector types are indicated for each module in the tables below. See Chapter 20.2 for details about each type.

Notes for the following table:

- **Thermal withstand voltage:** continuous with 60 % of the input channels are energized.
- **Clamp voltage:** these are the guaranteed values; the actual ones might differ from those provided here (falling and rising around $0.66 U_N$ and $0.77 U_N$, respectively)

MODULE TYPE	O6R5+/2101	O6R5+/4201
BINARY INPUT CHARACTERISTICS		
CHANNEL NUMBER	6	6
RATED VOLTAGE	110 V / 220 V user selectable on channel basis by jumpers	24 V / 48 V user selectable on channel basis by jumpers
TIME SYNCHRONIZATION	configured by EuroCAP	configured by EuroCAP
THERMAL WITHSTAND VOLTAGE	320 V	72 V
CLAMP VOLTAGE	falling $0.64 U_N$ rising $0.8 U_N$	falling $0.64 U_N$ rising $0.8 U_N$
COMMON GROUPS	1×6 common	1×6 common
RELAY OUTPUT CHARACTERISTICS		
RATED VOLTAGE	250 V AC/DC	250 V AC/DC
CONTINUOUS CARRY	8 A	8 A
CONTACT VERSIONS	4 NO, 1 CO	4 NO, 1 CO
GROUP ISOLATION	2×2 common, 1 independent	2×2 common, 1 independent
CONNECTOR TYPE FOR BOTH BINARY INPUT AND RELAY OUTPUT	Default: BLA Options: T	Default: BLA Options: T

Main features for binary inputs:

- Digitally filtered per channel
- Current drain:
 - max. 1.6 mA per channel at 220 V DC
 - max. 1.8 mA per channel at 110 V DC
 - max. 2 mA per channel at 48 V DC
 - max. 3 mA per channel at 24 V DC
- In such applications where the input voltage is 60 V the modules with 48 V rated voltage can be used.
- Input voltage type can be either DC or AC voltage. If AC voltage is used make sure that the type and the parameters of the binary inputs are configured properly in EuroCap tool.

Main features for signaling outputs:

- Maximum switching voltage: 400 V AC
- Breaking capacity, (L/R=40 ms) at 220 V DC: 0.1 A, at 110 V DC: 0.2 A
- Breaking capacity max.: 2000 VA
- Short time carrying capacity: 1 s, 35 A
- Limiting making current, max. 4 s: 15 A (df = 10 %)
- Initial dielectric strength between open contacts, 1 min: 1000 V_{RMS}
- Circuit closing capability: typically 10 ms, maximally 22 ms.
- Bounce time: typically 6,5 ms, maximally 10 ms.
- Mechanical endurance: 10×10^6 cycles
- Circuit closing capability

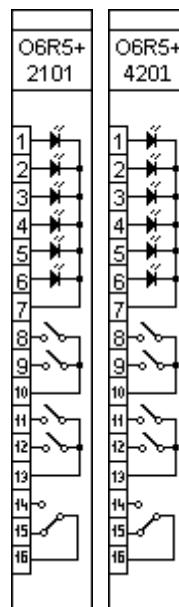


Figure 18-3 Binary input/output modules

1.3.20.4. Binary input module with time synchronization

The inputs are galvanically isolated and the module converts high-voltage signals to the voltage level and format of the internal circuits. This module is also used as an external IRIG-B synchronization (**IRIG-B000, unmodulated**), PPM or PPS input. Dedicated synchronization input is used for this purpose.

Connector types:

- The default and optionally available connector types are indicated for each module in the tables below. See Chapter [20.2](#) for details about each type.

Notes for the following table:

- **Thermal withstand voltage:** continuous with 60 % of the input channels are energized.
- **Clamp voltage:** these are the guaranteed values; the actual ones might differ from those provided here (falling and rising around 0.66 U_N and 0.77 U_N , respectively)

MODULE TYPE	O9S+/2111	O9S+/2121	O9S+/4221
CHANNEL NUMBER	9	9	9
SYNCHRON CHANNEL TYPE AND NUMBER	1 isolated BNC connector	1 850 nm multimode fiber with ST connector	1 850 nm multimode fiber with ST connector
RATED VOLTAGE	110 V DC / 220 V DC user selectable by jumpers	110 V DC / 220 V DC user selectable by jumpers	24 V DC / 48 V DC user selectable by jumpers
THERMAL WITHSTAND VOLTAGE	320 V	320 V	72 V
WITHSTAND VOLTAGE FOR SYNC. INPUT	35 V _{PEAK}	-	-
CLAMP VOLTAGE	falling 0.64 U_N rising 0.8 U_N	falling 0.64 U_N rising 0.8 U_N	falling 0.64 U_N rising 0.8 U_N
COMMON GROUPS	9 (3 x 3 common)	9 (3 x 3 common)	9 (3 x 3 common)
CONNECTOR TYPE	<u>Default:</u> BLA <u>Options:</u> T	<u>Default:</u> BLA <u>Options:</u> F, T	<u>Default:</u> - <u>Options:</u> F, T

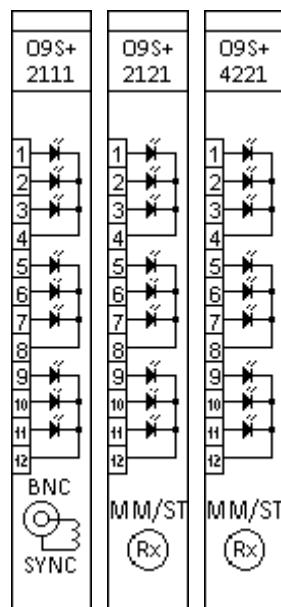
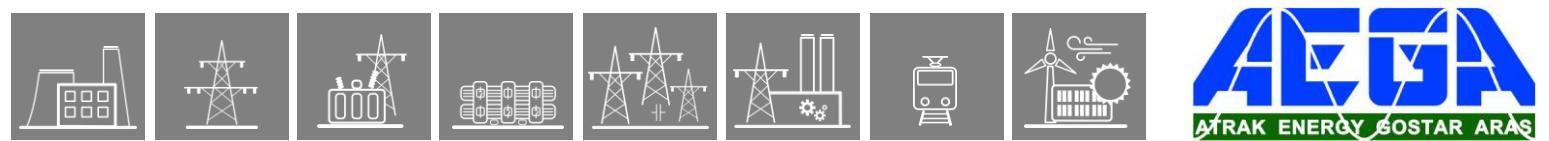
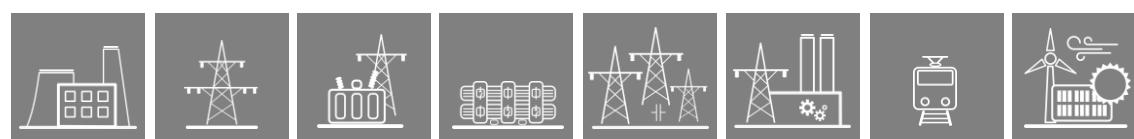



Figure 18-4 Binary input modules with time synchronization

1.3.20.5. Externally driven trip module

The R4MC+01 is a special TRIP module, which can be operated from the connector side. It also has two diode inputs with cathodes which are connected and led to the connector side.

Connector types:


- The default and optionally available connector types are indicated for each module in the tables below. See Chapter [20.2](#) for details about each type.

Module type	R4MC+/01*
CHANNEL NUMBER	2
RATED VOLTAGE	110 V DC
THERMAL WITHSTAND VOLTAGE	132 V DC
CONTINUOUS CARRY	8 A
MAKING CAPACITY	0.5 s, 30 A
BREAKING CAPACITY	L/R = 40 ms: 4 A DC
DIODE PROPERTIES	1 A, 1000 V DC
CONNECTOR TYPE	Default: BLA Options: F

*Special module

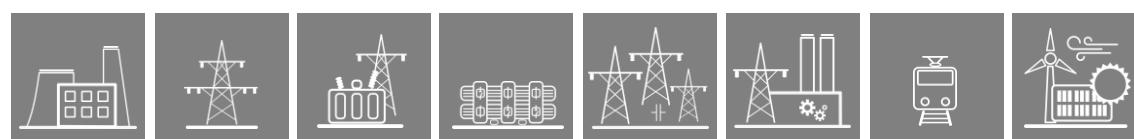
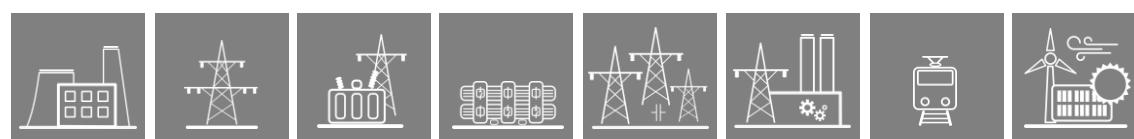


Figure 18-5 Externally driven TRIP module


1.3.21. General data

- Storage temperature: - 40 °C ... + 70 °C
- Operation temperature: - 20 °C ... + 55 °C
- Humidity: 10 % ... 93 %
- Altitude: up to 2000 m
- Atmospheric pressure: 86 ... 106 kPa

1.3.21.1. Standard conformance

- Electrostatic discharge immunity (ESD), IEC-EN 60255-26:2013, Level 4
 - Test voltages: 15 kV air discharge, 8 kV contact discharge
- Radiated, radio-frequency, electromagnetic field immunity, IEC-EN 60255-26:2013 Level 3
 - Test field strength: 10 V/m
- Electrical fast transient/burst immunity (EFT/B), IEC-EN 60255-26:2013, Level 4
 - Test voltage: 4 kV
- Surge immunity test, IEC-EN 60255-26:2013
 - Test voltages: 4 kV line-to-earth, 2 kV line-to-line
- Immunity to conducted disturbances, induced by radio-frequency fields, IEC-EN 60255-26:2013, Level 3
 - Test voltage: 10 V
- Damped oscillatory wave immunity test, IEC-EN 60255-26:2013
 - Test frequency: 1 MHz
 - Test voltage: 2.5 kV in common mode, 1 kV in differential mode
- Voltage dips, short interruptions and voltage variations immunity, IEC-EN 60255-26:2013
 - Voltage dips: 40 % (200 ms), 70 % (500 ms), 80 % (5000 ms)
- Ripple on d.c. input power port immunity, IEC-EN 60255-26:2013
 - Level 4, 15 % of rated d.c. value
- Power frequency magnetic field immunity test, IEC-EN 60255-26:2013, Level 5
 - Test field strength: 100 A/m continuous, 1000 A/m for 3 s
- Power frequency immunity test on the binary inputs, IEC-EN 60255-26:2013, Class A
 - Test voltages: 300 V in common mode, 150 V in differential mode
- Insulation tests, IEC-EN 60255-27:2013
 - Impulse voltage test
 - Test levels: 5 kV (1 kV for transducer and temperature measuring inputs)
 - Dielectric test
 - Test levels: 2 kV AC 50 Hz (0.705 kV DC for transducer inputs)
 - Insulation resistance
 - Insulation resistance > 15 GΩ
- Radiated emission, IEC-EN 60255-26:2013
Limits:
 - 30 MHz to 230 MHz: 50 dB(µV/m) quasi peak, 3 m
 - 230 MHz to 1 000 MHz: 57 dB(µV/m) quasi peak, 3 m
 - 1 GHz to 3 GHz: 76 dB(µV/m) peak, 3 m
 - 3 GHz to 6 GHz: 80 dB(µV/m) peak, 3 m
- Conducted emission, IEC-EN 60255-26:2013
Limits:
 - 0,15 MHz to 0,50 MHz: 79 dB(µV) quasi peak, 66 dB(µV) average
 - 0,5 MHz - 30 MHz: 73 dB(µV) quasi peak, 60 dB(µV) average
- Vibration, shock, bump and seismic tests on measuring relays and protection equipment
 - Vibration tests (sinusoidal), Class I, IEC 60255-21-1:1988
 - Shock and bump tests, Class I, IEC 60255-21-2:1988
 - Seismic tests, Class I, IEC 60255-21-3:1993

1.3.22. Mechanical data

1.3.22.1. General mechanical data

- Construction: chromate aluminum surface with built-in EMC accessories
 - If the power consumption of a 84 HP or 42 HP device does not exceed 30 W (84 HP) or 14 W (42 HP), the construction will be built with solid top and bottom cover panels.
 - If the power consumption exceeds 30 W (84 HP) or 14 W (42 HP), the construction will be built with (honeycomb) perforated top and bottom cover panels.
- EMC rack protects against electromagnetic environmental influences and protects the environment from radiation from the interior
- IP protection:
 - 24 HP panel instrument case: IP4x; optionally IP54 (front)
 - 84 HP and 42 HP (including double) rack: IP4x from front side, IP2x from rear side; optionally IP54 (front)
- Size:
 - 19" (84 HP), 3 U, single rack
 - ½ 19" (42 HP), 3 U, single rack
 - ½ 19" (42 HP), 6 U, double rack
 - 24 HP, panel instrument case
- Weight:
 - 84 HP: max. 8 kg
 - 42 HP, 3 U: max. 4.5 kg
 - 42 HP, 6 U: max. 8 kg
 - 24 HP: max. 3 kg

1.3.22.2. Connectors

Optionally, certain modules can be equipped with different terminals for different connectors. The available choices are listed among each module's technical data with their *short ID* (see the first column of the table below).

The type of the used terminal is indicated on the module's label with its *short ID* (see the following example). The actual type of the connector is chosen according to the number of the available pins of the module.

Example: the VT+/2211 module may have four types of connectors. In its description (Chapter 6), these are indicated with their ID:

- The default terminal is indicated with nothing attached (VT+/2211), only its name (BLA) is mentioned. Since it has 8 pins, the type is BLA 8/180
- The flanged terminal's *short ID* is **F**, so the module's label will be "VT+/2211F", if it is equipped with this terminal (BLA 8B/180)
- Top-screw terminal: **T**, the label becomes "VT+/2211T" (BLT 5.08HC/08/180F)
- Ring-lug terminal: **R**, so the module's label shall be "VT+/2211R"

CONNECTOR NAME (SHORT ID)	CONNECTOR TYPES	STRIP LENGTH [MM]	CONDUCTOR AREA [MM ²]	CONDUCTOR DIAMETER [MM]	TIGHTENING TORQUE [NM]	MINIMUM BEND RADIUS*
BLA (-)	Weidmüller BLA 2/180, BLA 3/180, BLA 4/180, BLA 6/180, BLA 8/180, BLA 10/180, BLA 12/180, BLA 13/180, BLA 16/180	7	0.2 – 1.5 solid: 0.2 – 2.5	0.5 – 1.4 solid: 0.5 – 1.8	0.4 – 0.5	3 × OD**
BL 3.5 (-)	Weidmüller BL 3.5/05/180 BL 3.5/09/180	6	0.2 – 1.5	0.5 – 1.4	0.2 – 0.25	3 × OD**
FLANGED (F)	Weidmüller BLA 2B/180, BLA 3B/180, BLA 4B/180, BLA 6B/180, BLA 8B/180, BLA 10B/180, BLA 12B/180, BLA 16B/180	7	0.2 – 1.5 solid: 0.2 – 2.5	0.5 – 1.4 solid: 0.5 – 1.8	0.4 – 0.5	3 × OD**
TOP-SCREW (T)	Weidmüller BLT 5.08HC/06/180F, BLT 5.08HC/08/180F, BLT 5.08HC/12/180F, BLT 5.08HC/16/180F	13	0.2 – 1.5 solid: 0.2 – 2.5	0.5 – 1.4 solid: 0.5 – 1.8	0.4 – 0.5	3 × OD**
RING-LUG (R)	TE Connectivity BC6-Q308-08	-	0.33 – 3.31	0.65 – 2.05	0.79	3 × OD**

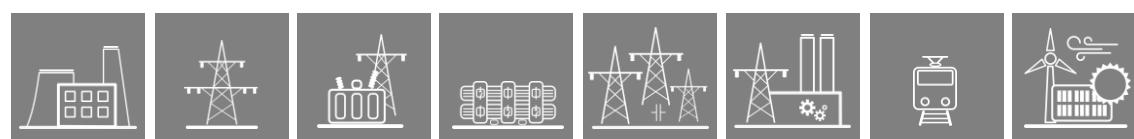
* Bend radius is measured along the inside curve of the wire or wire bundles.

** OD is the outer diameter of the wire or cable, including insulation.

CONNECTOR NAME (SHORT ID)	CONNECTOR TYPES	STRIP LENGTH [MM]	CONDUCTOR AREA [MM ²]	CONDUCTOR DIAMETER [MM]	TIGHTENING TORQUE [NM]	MINIMUM BEND RADIUS*
STVS (-)	Weidmüller STVS 6 SB, STVS 8 SB	9	0.5 – 4	0.8 – 2.3	0.5 – 0.6	3 × OD**
B2L 3.5	Weidmüller B2L 3.5	7	0.2 – 1	0.5 – 1.1	tension clamp connection	3 × OD**
ST/FC/LC	Bayonet/Screw/Snap Fiber Optic	-	-	-	-	30 mm
PE FASTON TERMINAL	TE Connectivity 6.3x0.8	7	min. 4	min. 2.3	-	3 × OD**

* Bend radius is measured along the inside curve of the wire or wire bundles.

** OD is the outer diameter of the wire or cable, including insulation.


The tightening torque of the screw for protective earth connection and the wall mounting must be approx. 5 Nm.

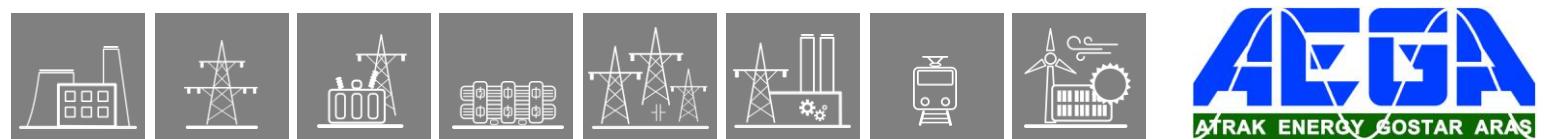
The tightening torque of the screw for fastening the STVS connector must be approx. 1 Nm.

The minimum distance between an EP+ device and its wire channel must be at least 3 cm.

The minimum distance between two EP+ devices must be at least 10 cm.

During the installation make sure that the shortest possible length for PE (Protective Earth) cable routing is applied.

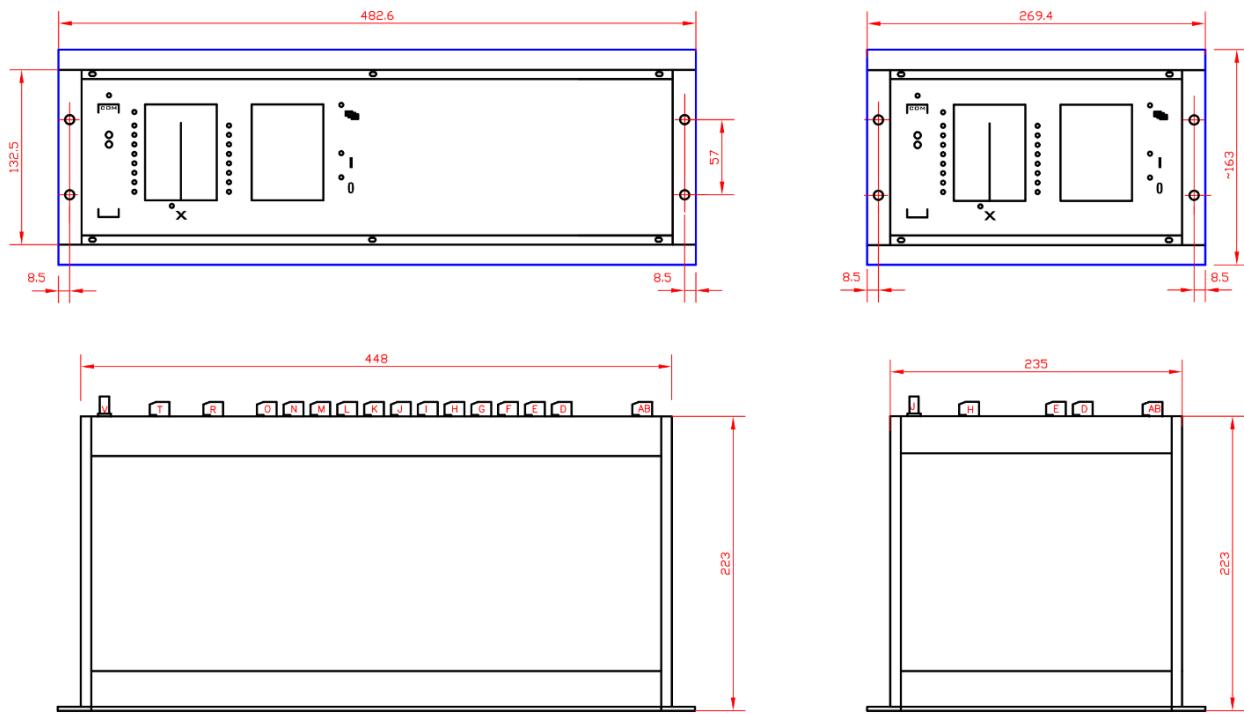
1.3.23. Mounting methods


- Flush mounting
 - 84 HP single rack
 - 42 HP single rack
 - 42 HP double rack
 - 24 HP panel instrument case
 - Remote HMI
- Rack mounting
 - 84 HP single rack
 - 42 HP single rack
 - Remote HMI
- Semi-flush mounting
 - 84 HP single rack
 - 42 HP single rack
 - 24 HP panel instrument case
 - Remote HMI
- Wall mounting (with terminals)
 - 84 HP single rack
 - 42 HP single rack
- Din rail mounting
 - 24 HP panel instrument case
- IP54 rated mounting
 - 84 HP single rack
 - 42 HP single rack
 - 24 HP panel instrument case (original frame with additional gasket)
- Fold-down mounting (with optional terminals)
 - 84 HP single rack
 - 42 HP single rack
- No mounting
 - 84 HP single rack
 - 42 HP single rack

MOUNTING METHOD	84 HP SINGLE RACK	42 HP SINGLE RACK	42 HP DOUBLE RACK	24 HP PANEL INSTRUMENT CASE	REMOTE HMI
FLUSH MOUNTING	X	X	X	X	X
RACK MOUNTING	X	X			X
SEMI-FLUSH MOUNTING	X	X		X	X
WALL MOUNTING (WITH TERMINALS)	X	X			
DIN RAIL MOUNTING				X	
IP54 RATED MOUNTING	X	X		X*	
FOLD-DOWN MOUNTING	X	X			

*additional gasket inserted into the original front panel frame

It is recommended to leave at least 80 mm free space for the wiring at the back of the IED in case of Flush mounting, Rack mounting, and Semi-flush mounting.



1.3.23.1. Flush mounting

Flush mounting can be used for all size of racks (84 HP, 42 HP, double 42 HP) including the 24 HP panel instrument case and the remote HMI devices. When this type of mounting alternative is used the 84 HP, 42 HP, double 42 HP and remote HMI devices have got a cover profile fit on and the 24 HP devices have got a mounting frame fit on.

The dimensions of the cut-outs for the 84 HP and 42 HP devices are also applicable for the same sized remote HMI devices.

1.3.23.1.1. Flush mounting of 84 HP and 42 HP single rack

PANEL CUT-OUT

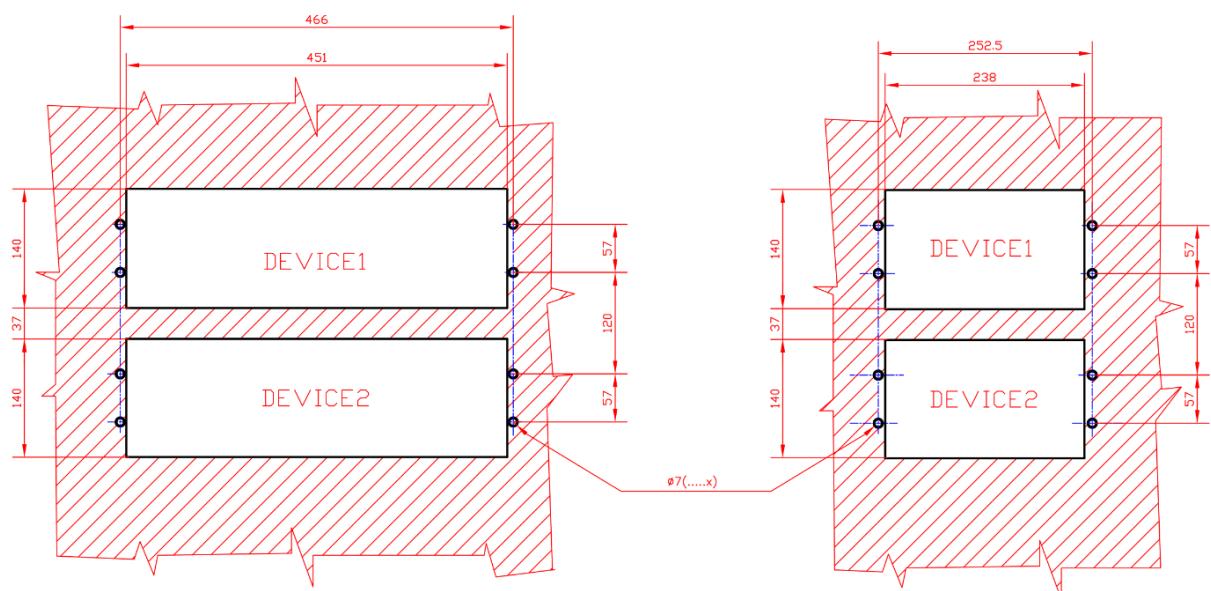


Figure 21-1 Dimensions for flush mounting of 84 HP and 42 HP single rack

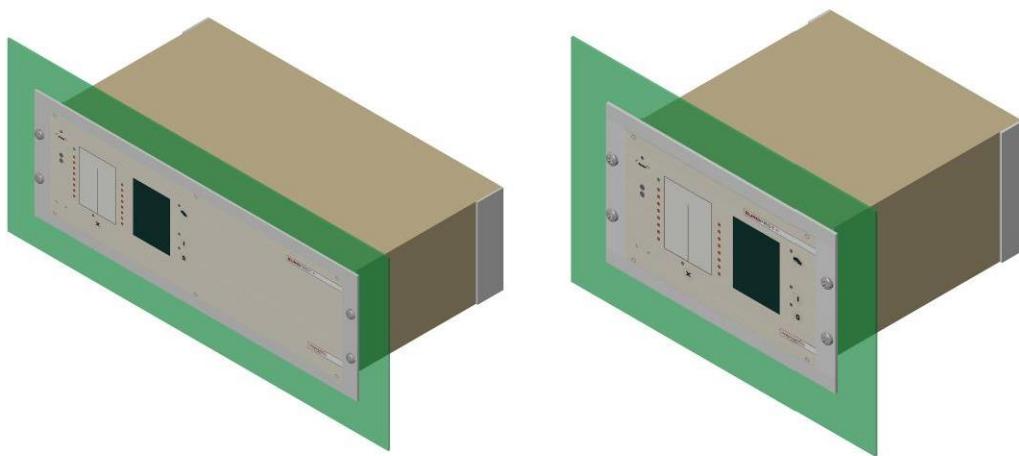
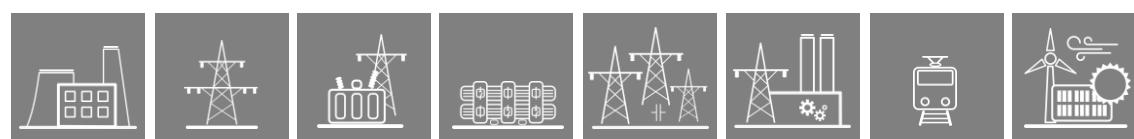



Figure 21-2 3D illustration for flush mounting of 84 HP and 42 HP devices

1.3.23.1.2. Flush mounting of 42 HP double rack

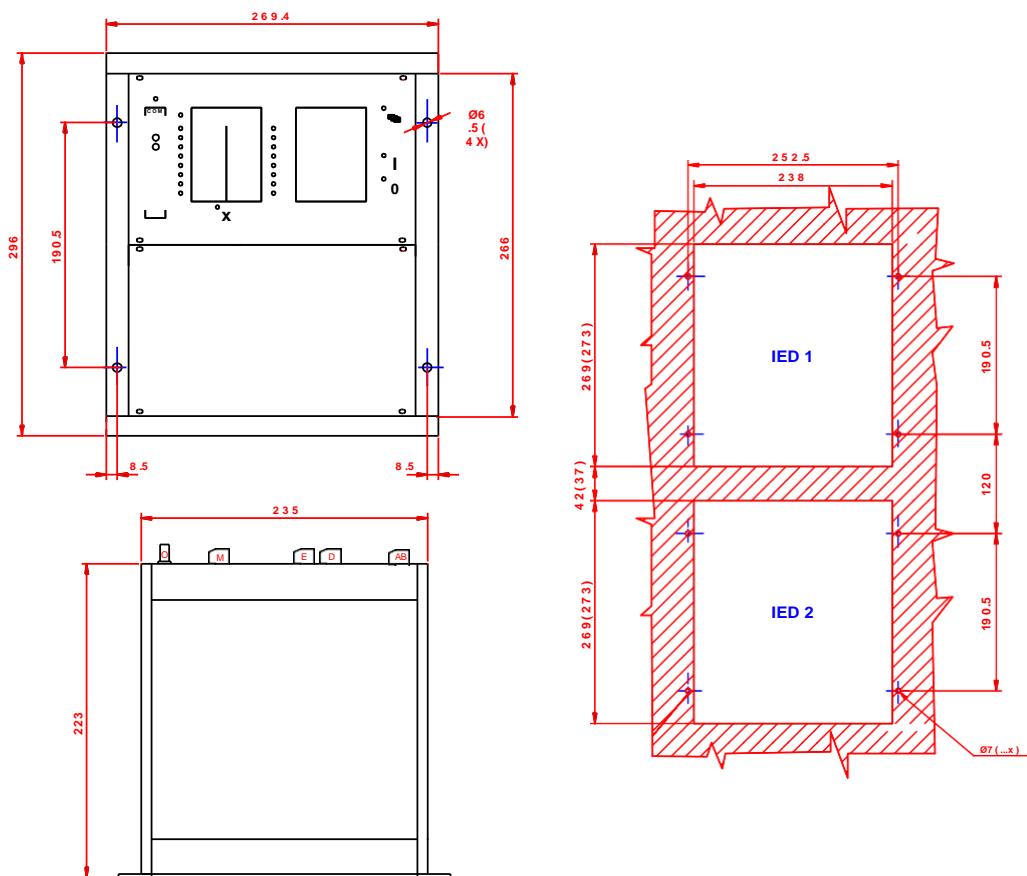


Figure 21-3 Dimensions for flush mounting of 42 HP double rack

Figure 21-4 42 HP wide cover profile

1.3.23.1.3. Flush mounting of 24 HP panel instrument case

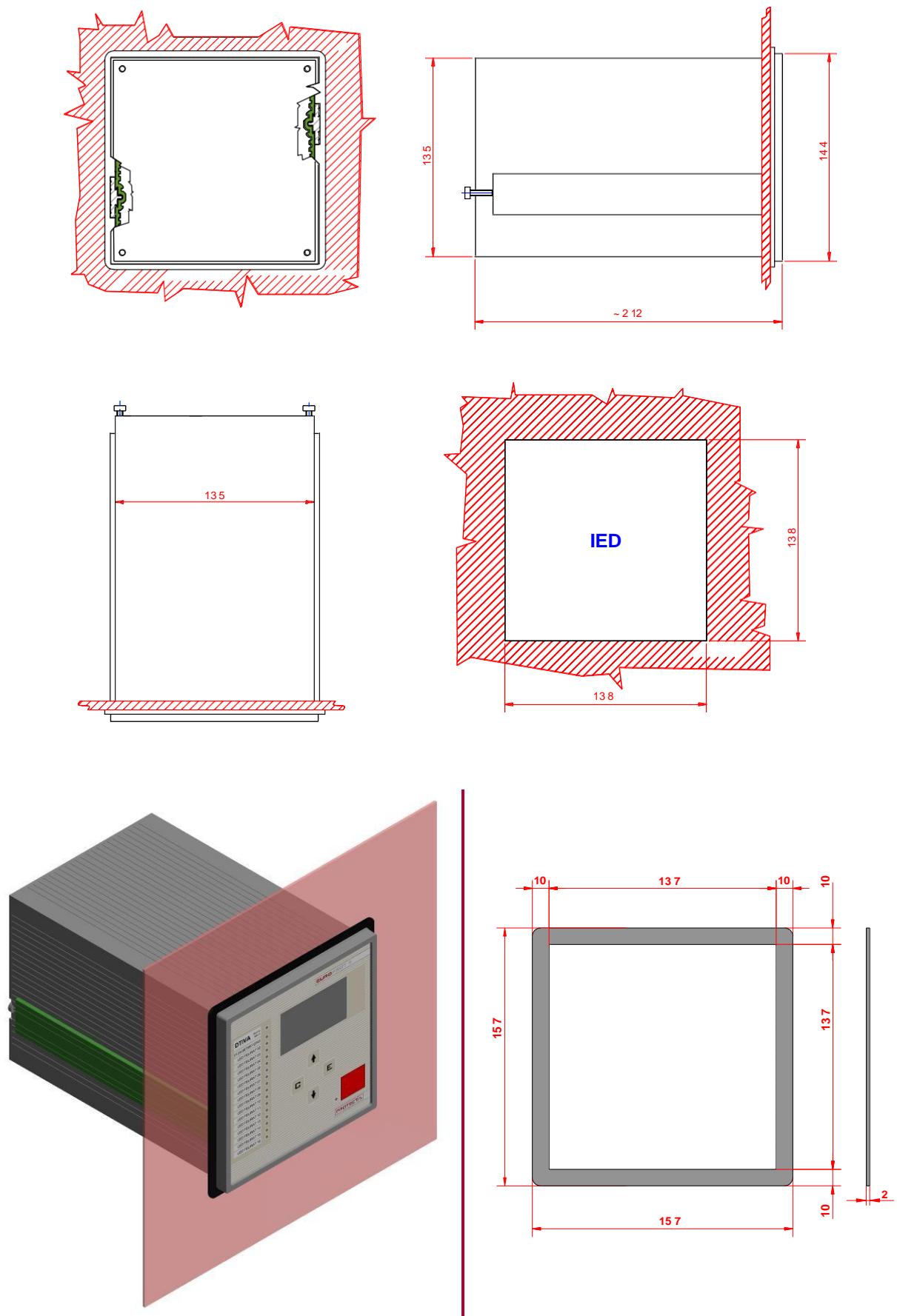
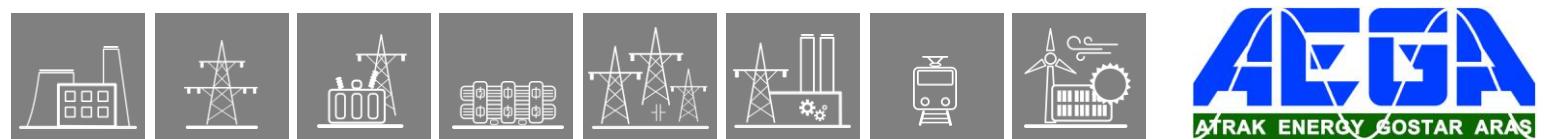



Figure 21-5 Dimensions for flush mounting of 24 HP panel instrument case with 3D illustration

1.3.23.2. Rack mounting

When rack mounting is used, the devices do not have a cover profile fit on, so it is possible to mount them in a 19" rack.

1.3.23.2.1. Rack mounting of 84 HP and 42 HP single rack

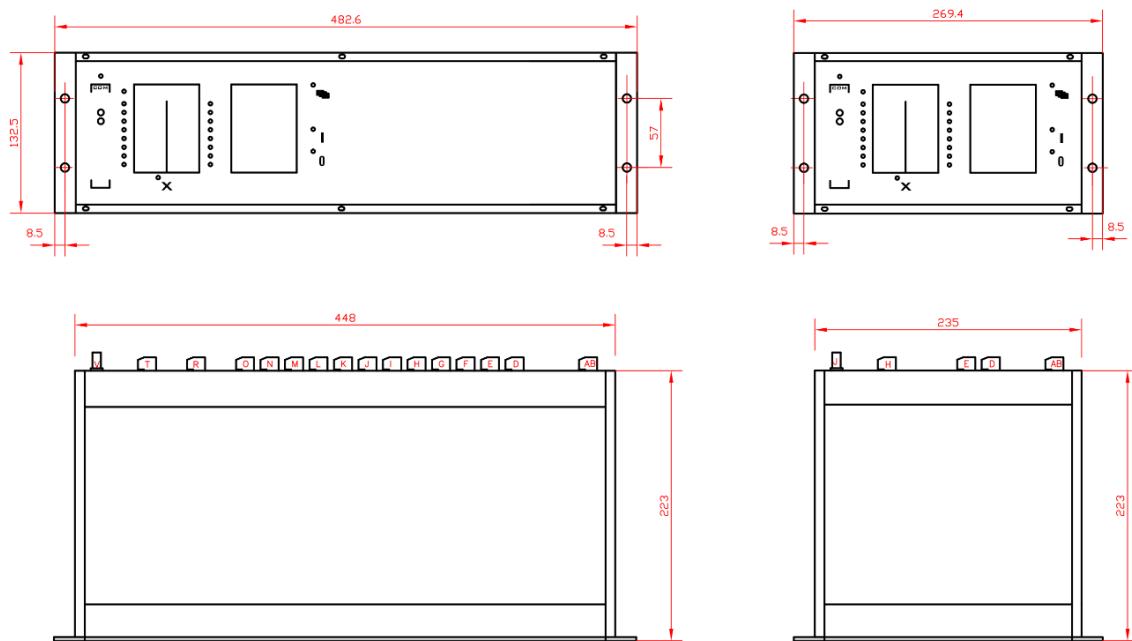


Figure 21-6 Dimensions for rack mounting of 84 HP and 42 HP single rack

Note that rack mounting type devices can also be mounted in a cut-out (e.g. on a switchgear door). It is possible to mount them from the front or from the back of the cut-out. The dimensions for rack mounting cut-outs are in the figure below. Dimensions in brackets are applicable in case of mounting from the back.

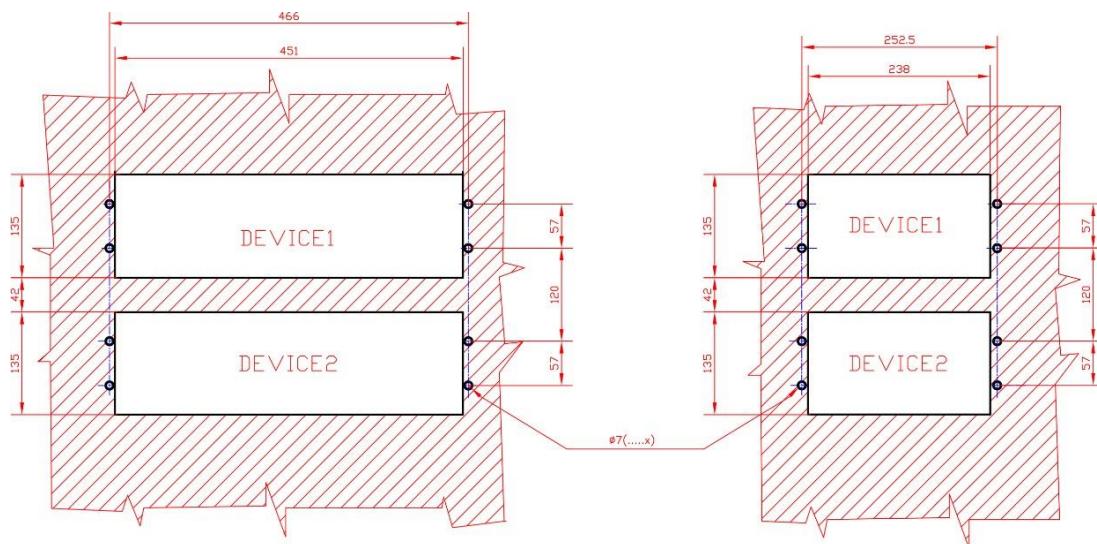
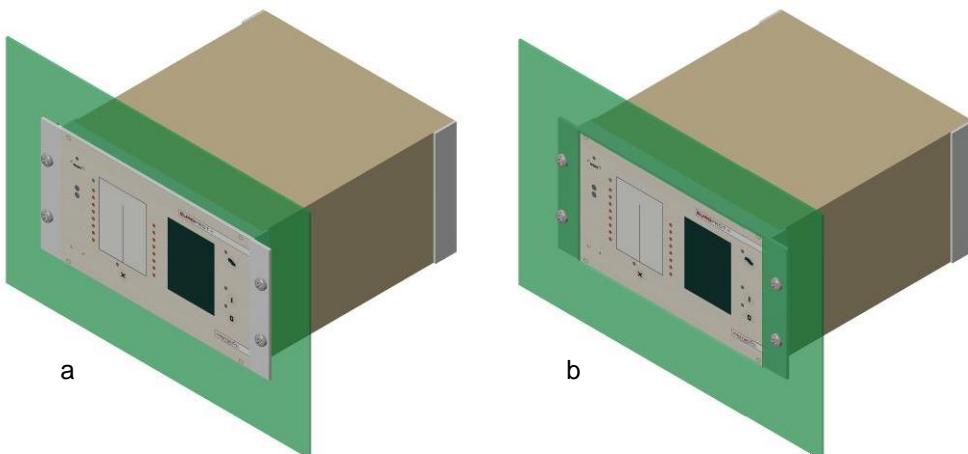
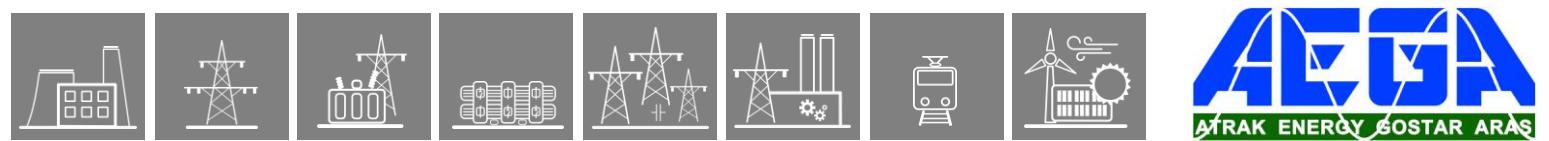
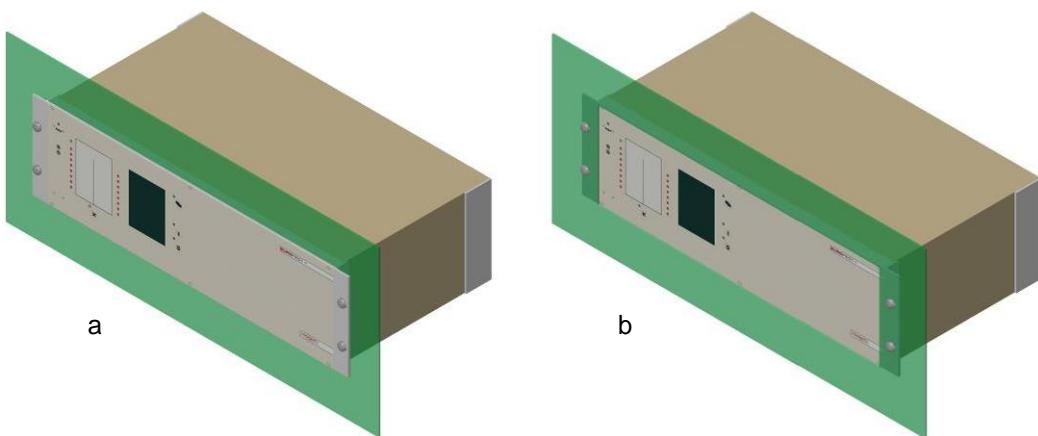





Figure 21-7 Dimensions of rack mounting cut-outs

*Figure 21-8 3D illustration for rack mounting of 42 HP device
(a - from the front; b - from the back)*

*Figure 21-9 3D illustration for rack mounting of 84 HP device
(a - from the front; b - from the back)*

1.3.23.2.2. Rack mounting of 42 HP double rack

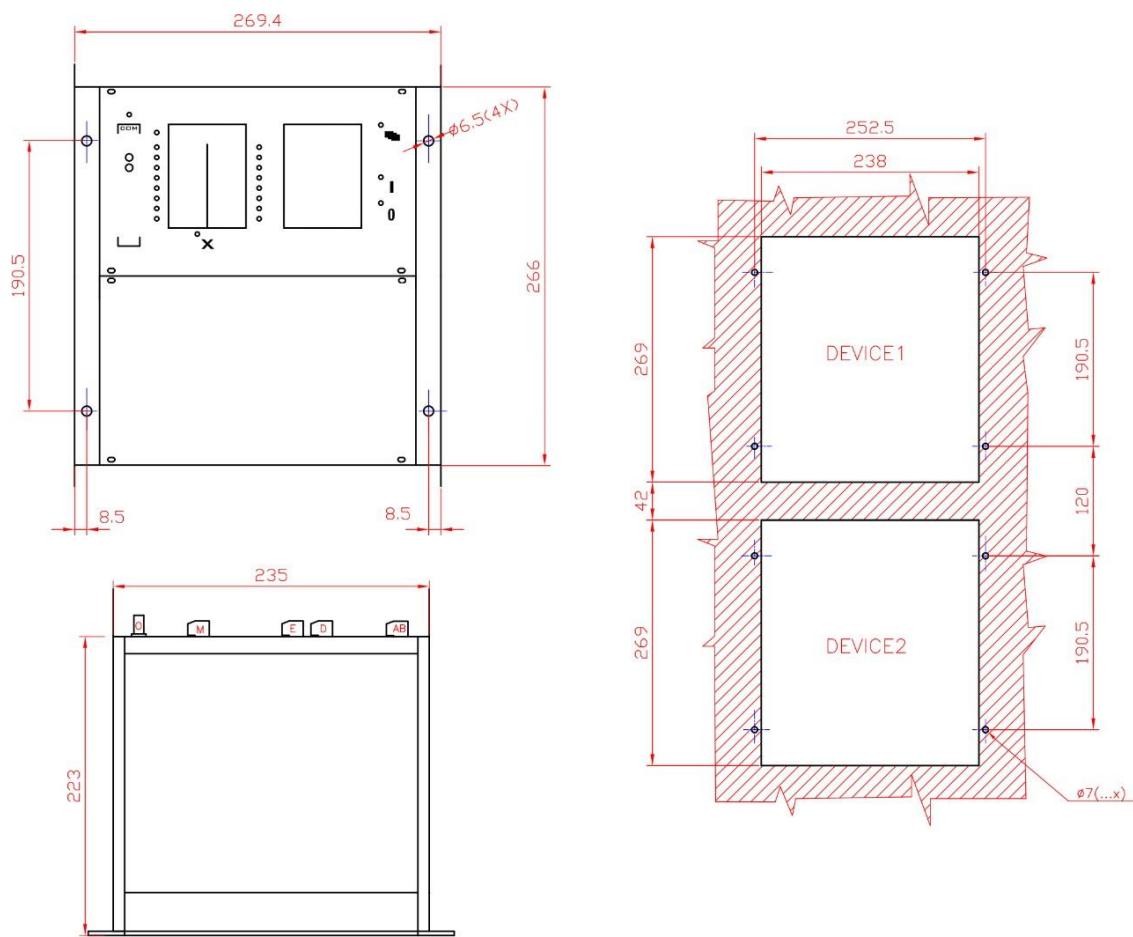


Figure 21-10 Dimensions for rack mounting of 42 HP double rack

1.3.23.3. Semi-flush mounting

Semi-flush mounting can be used for 84 HP and 42 HP single racks, for 24 HP panel instrument cases and for remote HMI devices. The purpose of this type of mounting alternative is to reduce the depth of the devices in the switchgear/rack if there is not enough space in that direction. To achieve this, a special mounting collar must be fit on the rack type devices. The default color of the mounting collar is grey (RAL 7035).

The dimensions of the special mounting collars and the cut-outs for the 84 HP and 42 HP devices are also applicable for the same sized remote HMI devices.

1.3.23.3.1. Semi-flush mounting of 84 HP single rack

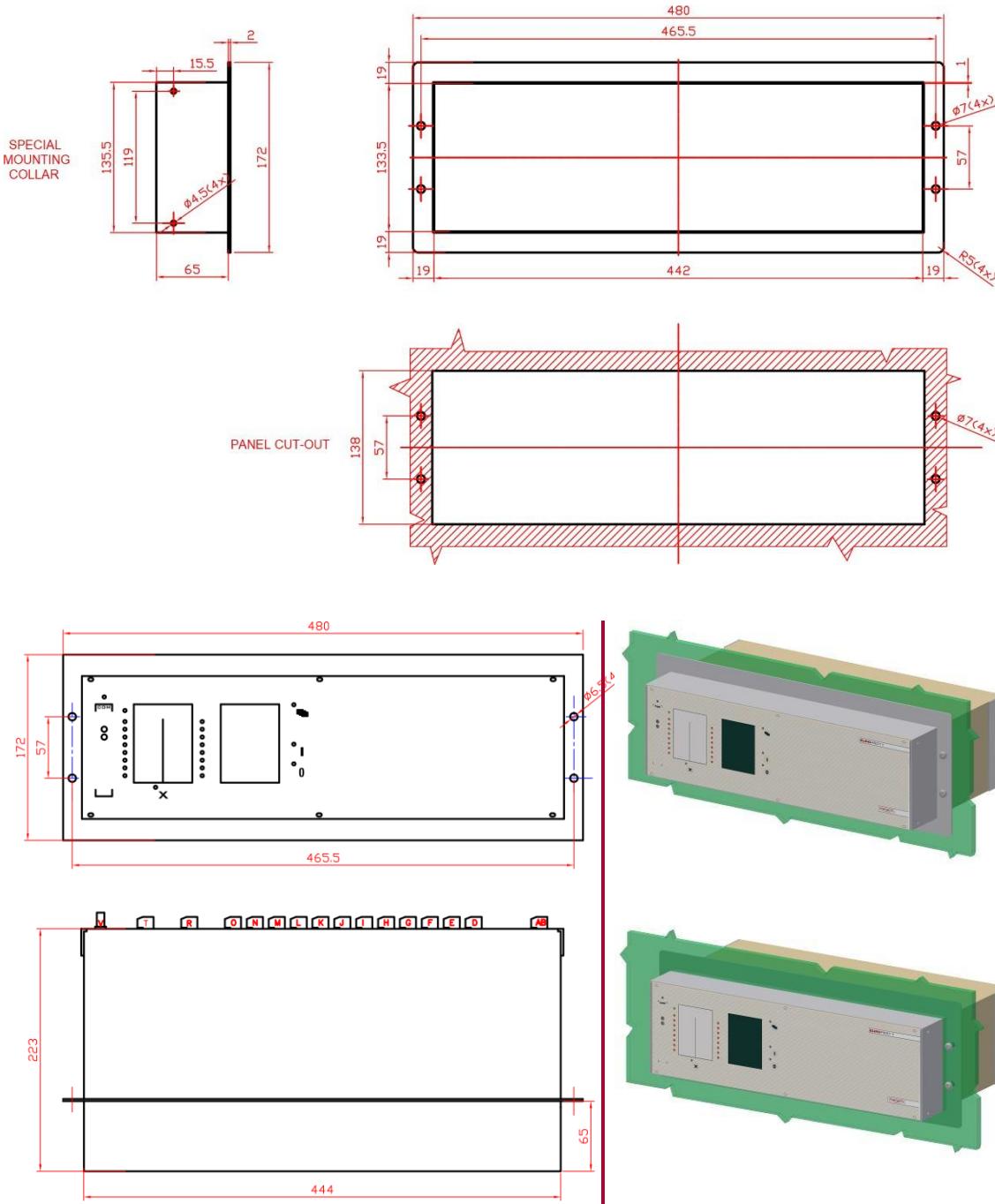
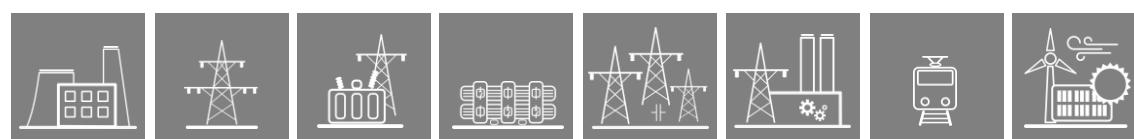
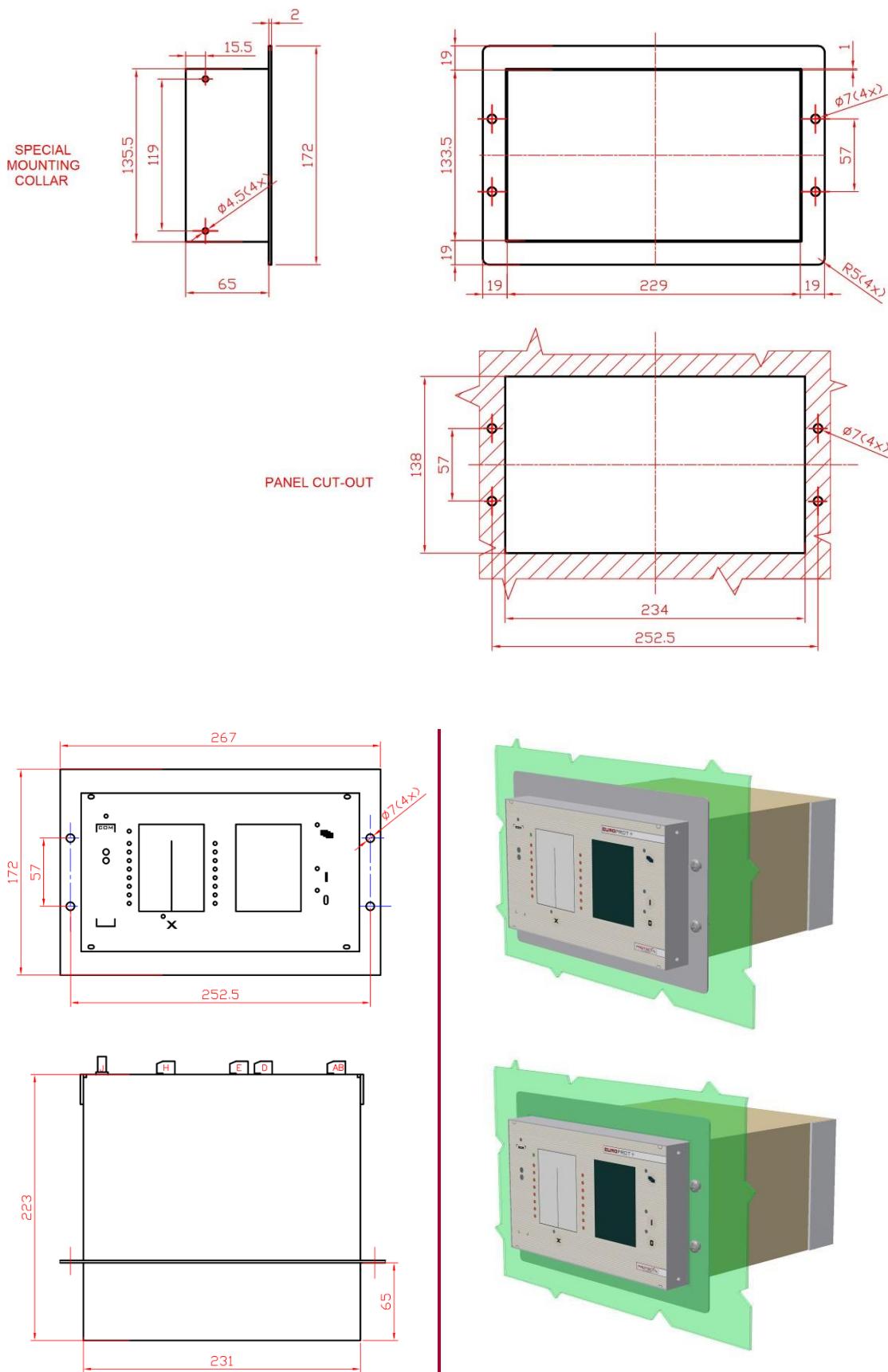
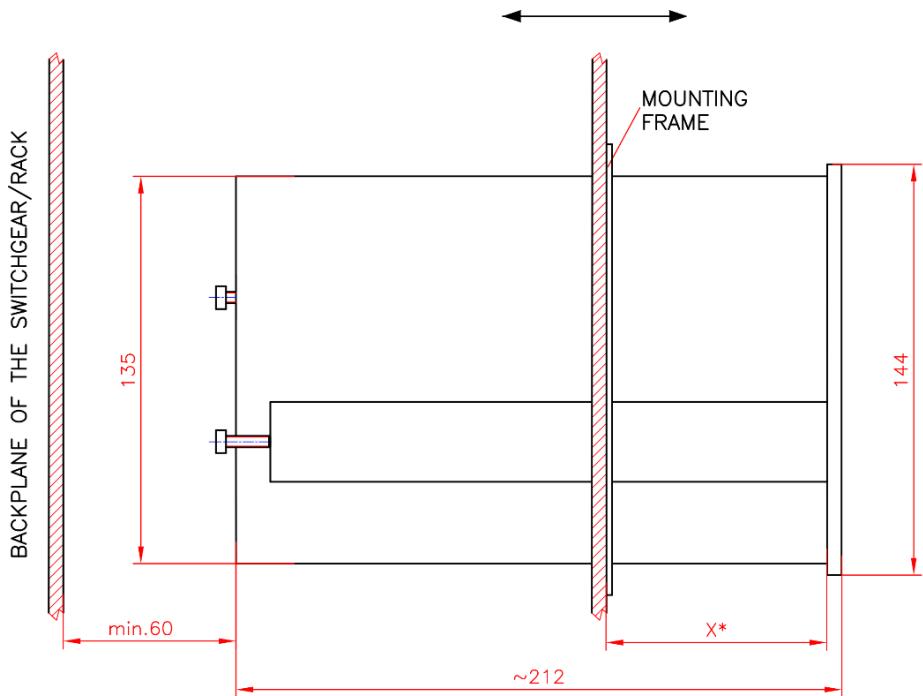



Figure 21-11 Dimensions for semi-flush mounting of 84 HP single rack with 3D illustration

1.3.23.3.2. Semi-flush mounting of 42 HP single rack




Figure 21-12 Dimensions for semi-flush mounting of 42 HP single rack with 3D illustration

1.3.23.3.3. Semi-flush mounting of 24 HP panel instrument case

The dimensions of the panel cut-out for this type of mounting method are the same as in case of flush mounting (138 mm x 138 mm). For semi flush mounting, it is enough to cut in two the fixing elements (with green colour in the 3D illustration below) and to make the assembly as shown in the pictures below.

Note that the IP54 front panel option cannot be utilized with this type of mounting.

*X:depending on the position of the cutting, the frame can be placed freely

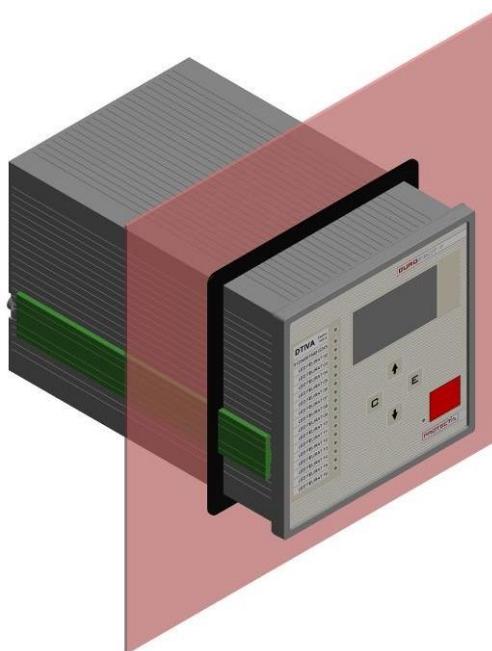


Figure 21-13 Dimensions for semi-flush mounting of 24 HP panel instrument case with 3D illustration

1.3.23.4. Wall mounting of 42 HP and 84 HP devices

Depending on the amount of the terminal contacts, it is possible to use both upper and lower terminals.

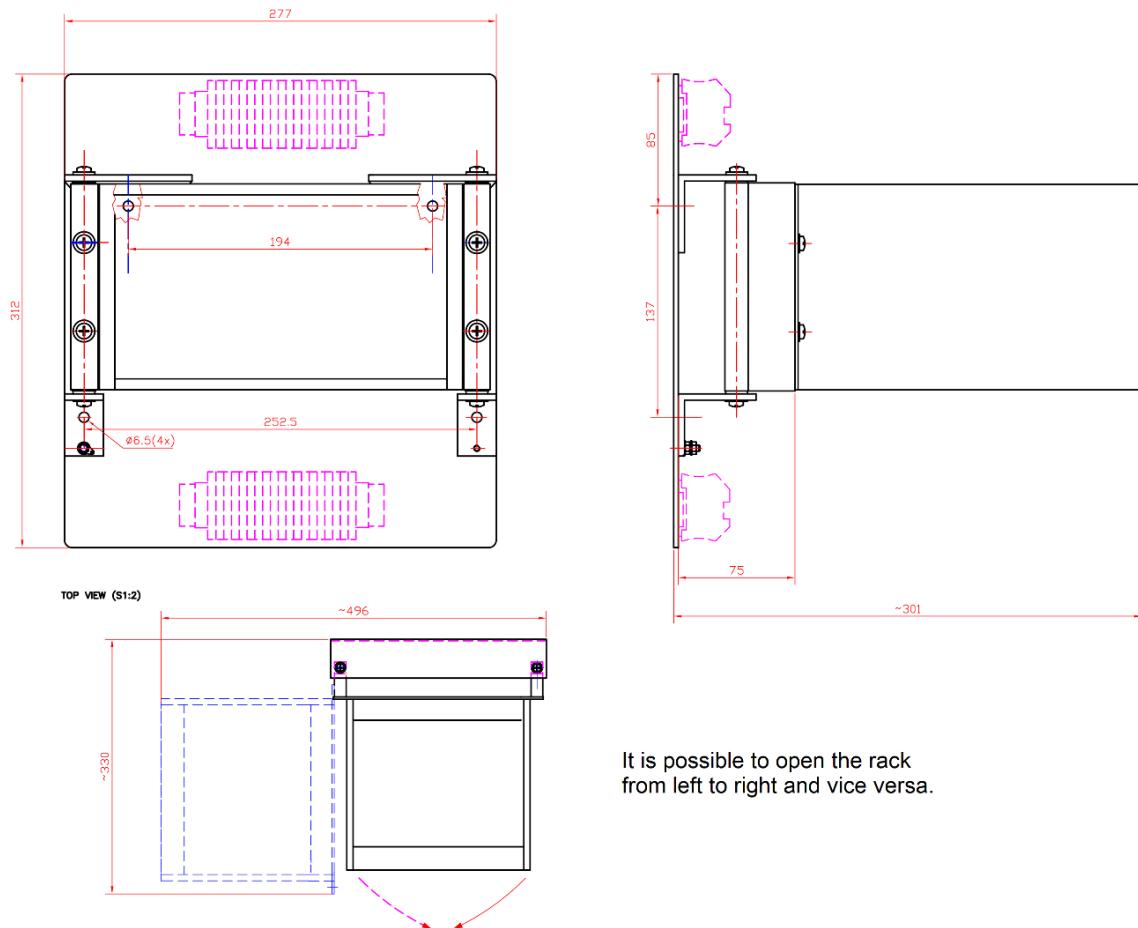


Figure 21-14 Dimensions for wall mounting of 42 HP devices (upper and lower terminals)

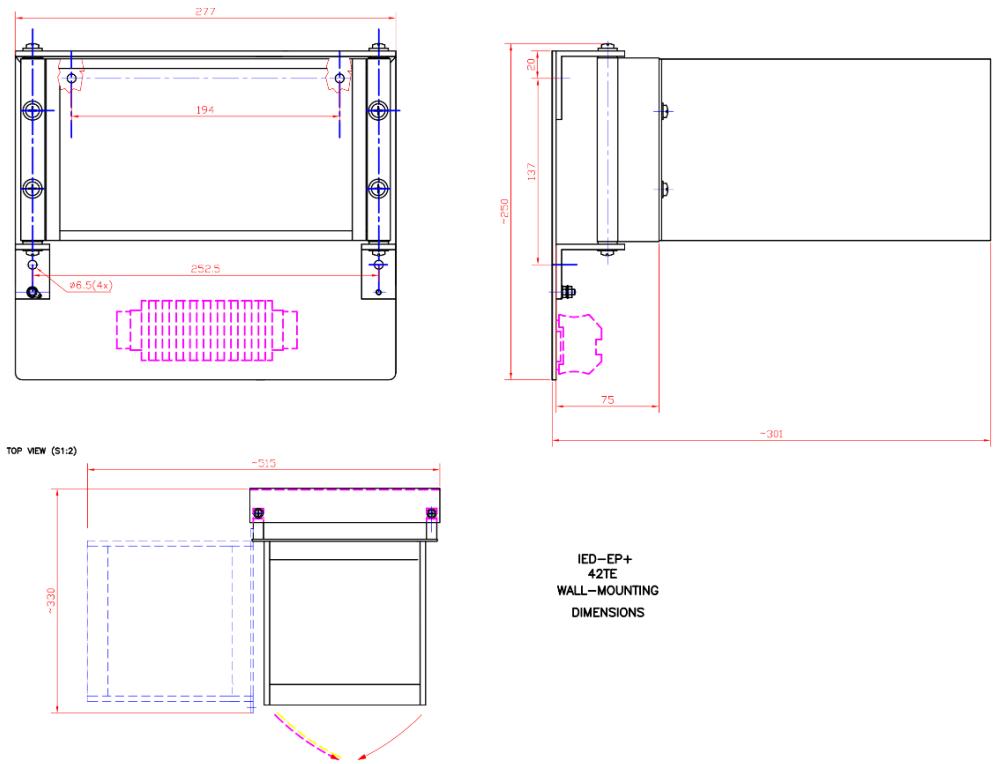


Figure 21-15 Dimensions for wall mounting of 42 HP devices (lower terminal only)

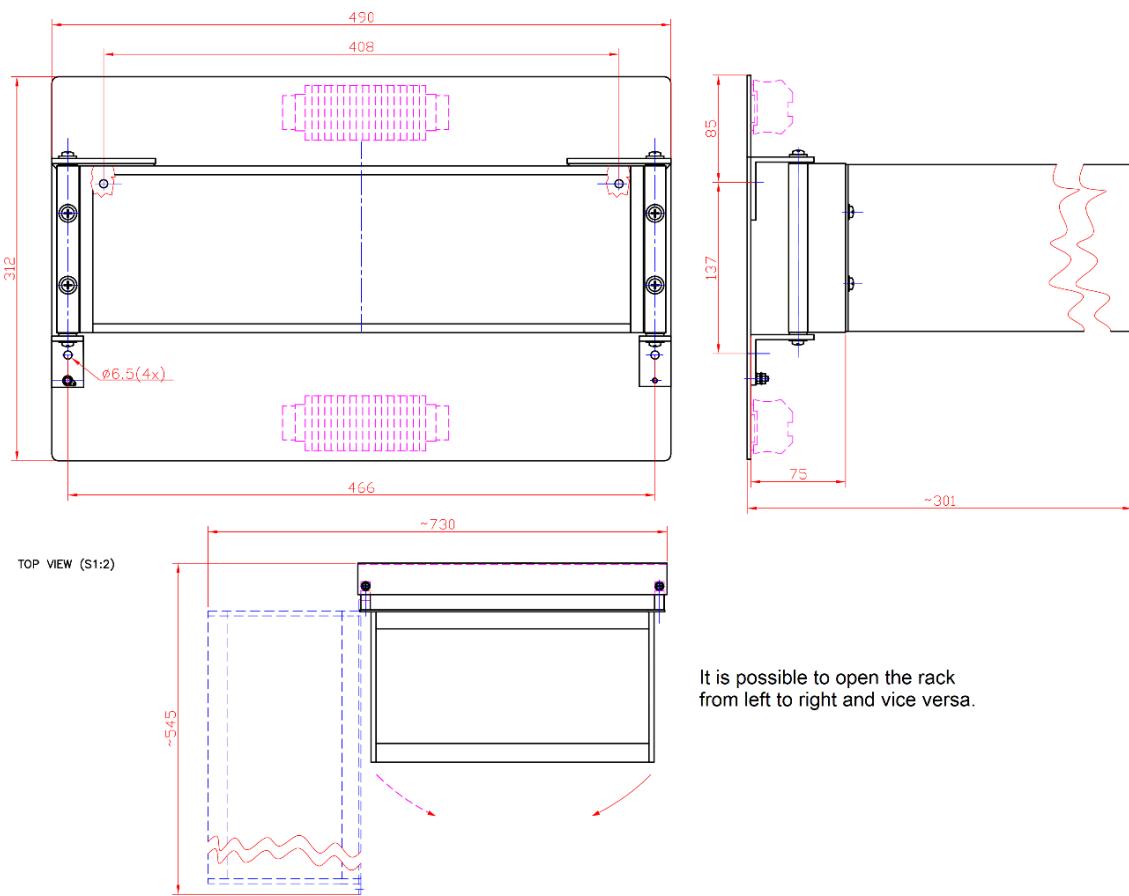


Figure 21-16 Dimensions for wall mounting of 84 HP devices (upper and lower terminals)

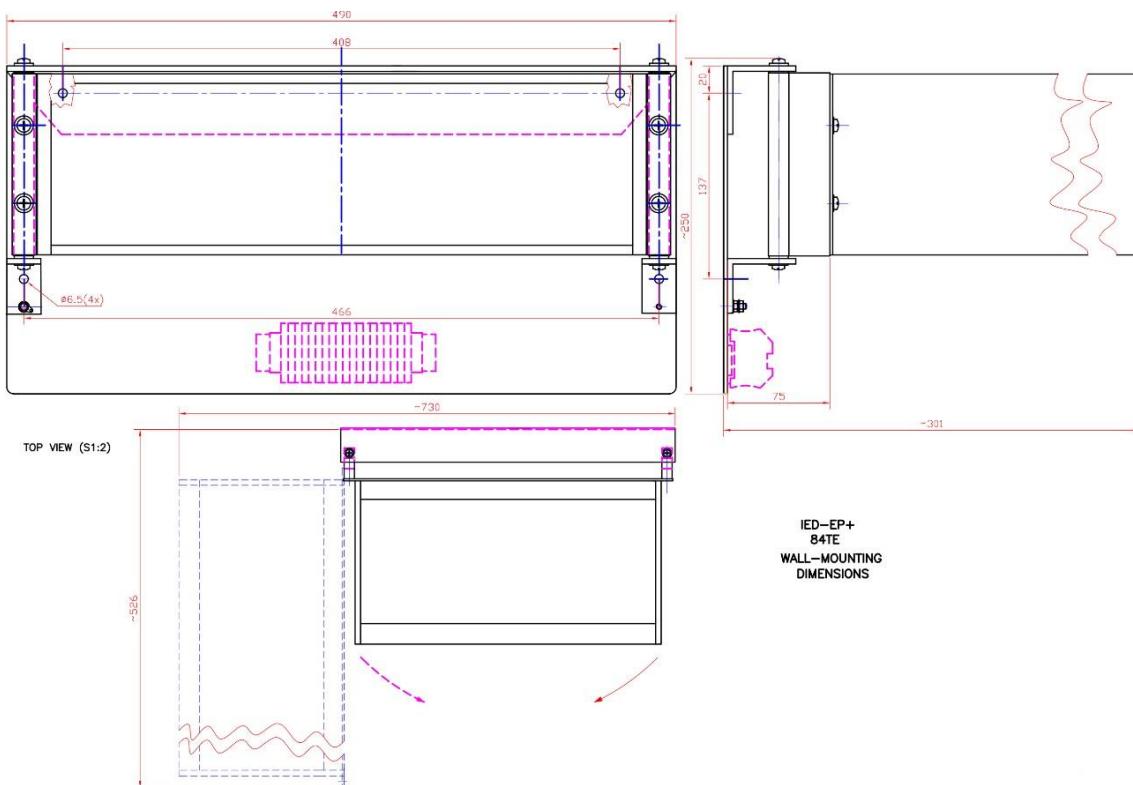
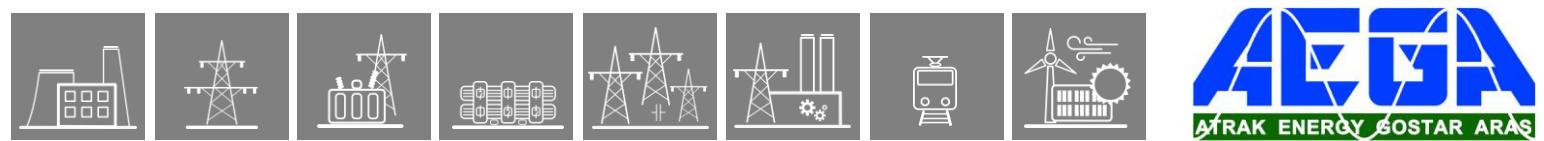



Figure 21-17 Dimensions for wall mounting of 84 HP devices (lower terminals only)

1.3.23.5. Din rail mounting of 24 HP panel instrument case

Note that the IP54 front panel option cannot be utilized with this type of mounting.

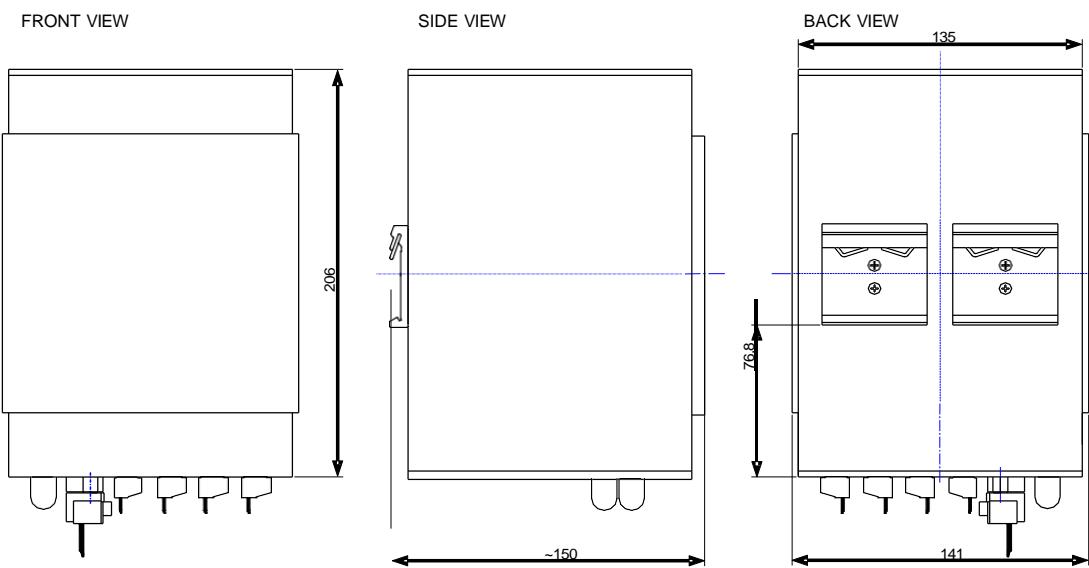


Figure 21-18 Dimensions for din rail mounting of 24 HP panel instrument case

1.3.23.6. IP54 rated mounting kit

The IP frame seen below provides IP54 protection from front side for 84HP and 42HP devices.

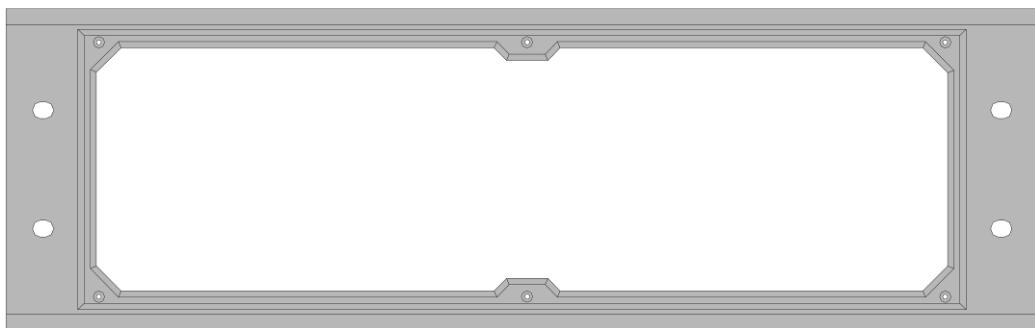


Figure 21-19 84 HP IP frame front view

Figure 21-20 42 HP IP frame front view

S24 devices

The S24 devices' front panel *does not differ from the normal front panel on the outside*, as there is IP54 gasket applied within the frame itself. Devices ordered with this option must be mounted by *flush mounting*; with other types of mountings (e.g. semi-flush), the IP54 protection is not guaranteed!

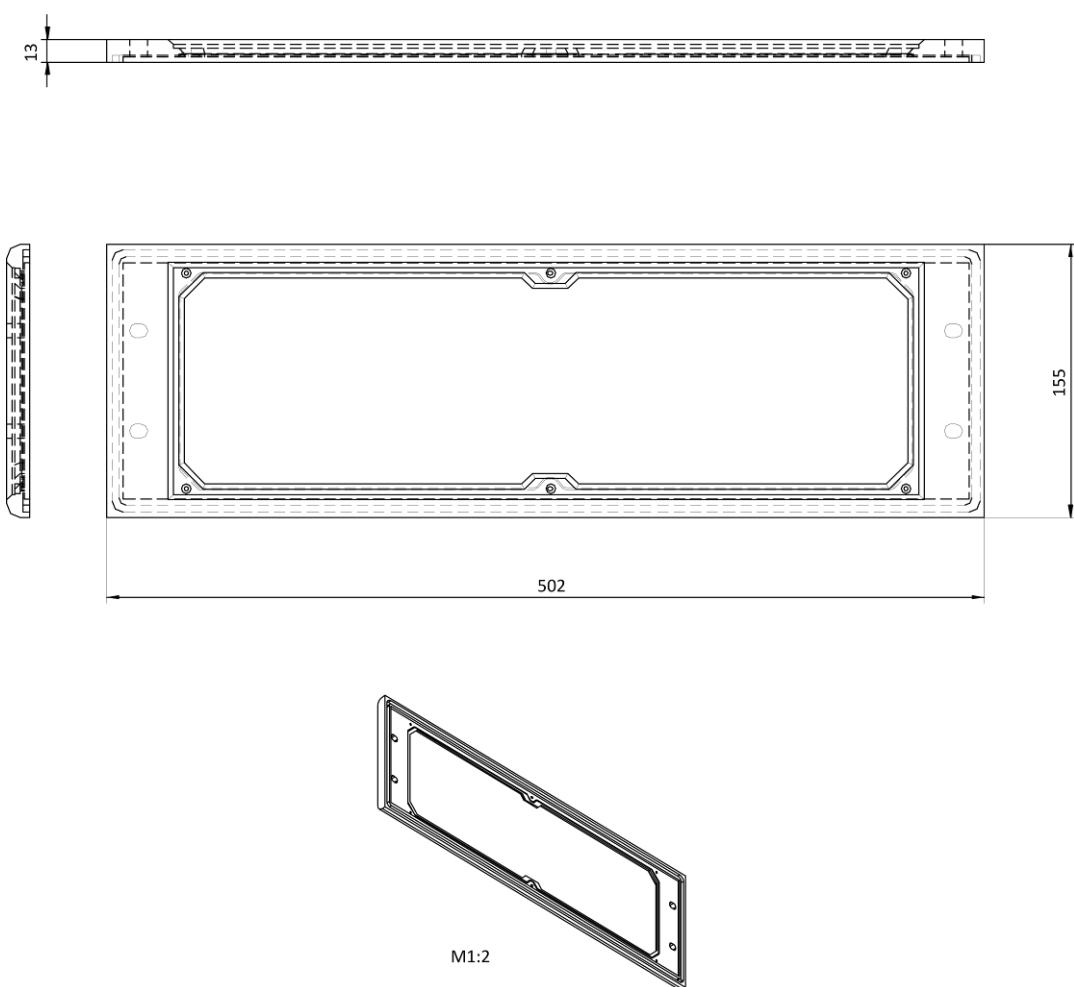


Figure 21-21: 84 HP IP frame dimensions

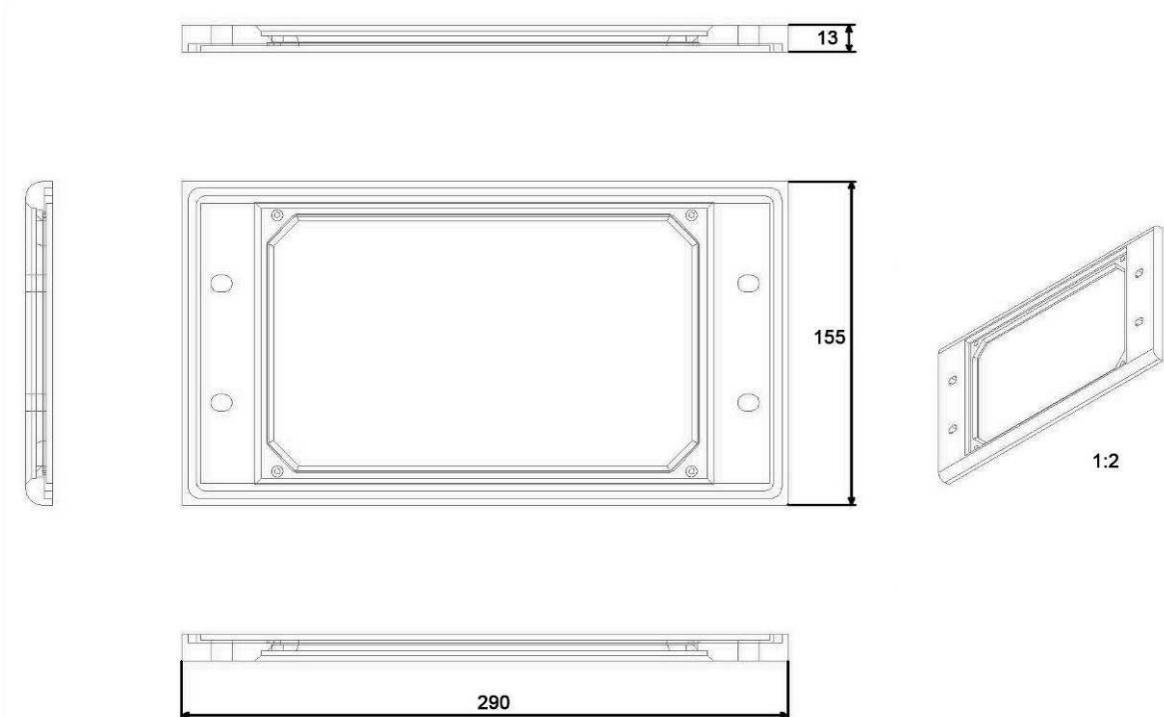


Figure 21-22 42 HP IP frame dimensions

1.3.23.7. Fold-down mounting

1.3.23.7.1. Fold-down mounting without terminals

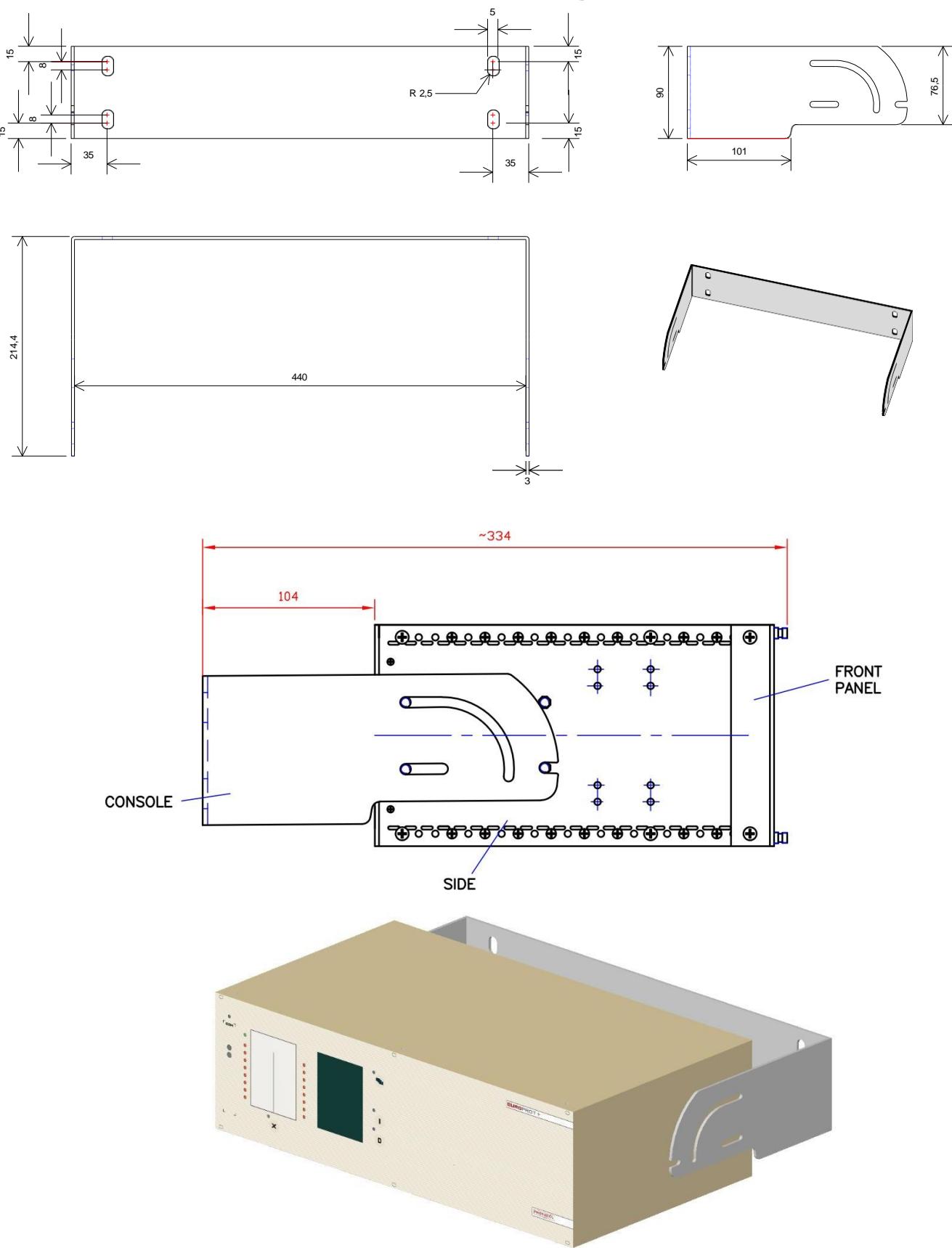


Figure 21-23 84 HP fold-down mounting

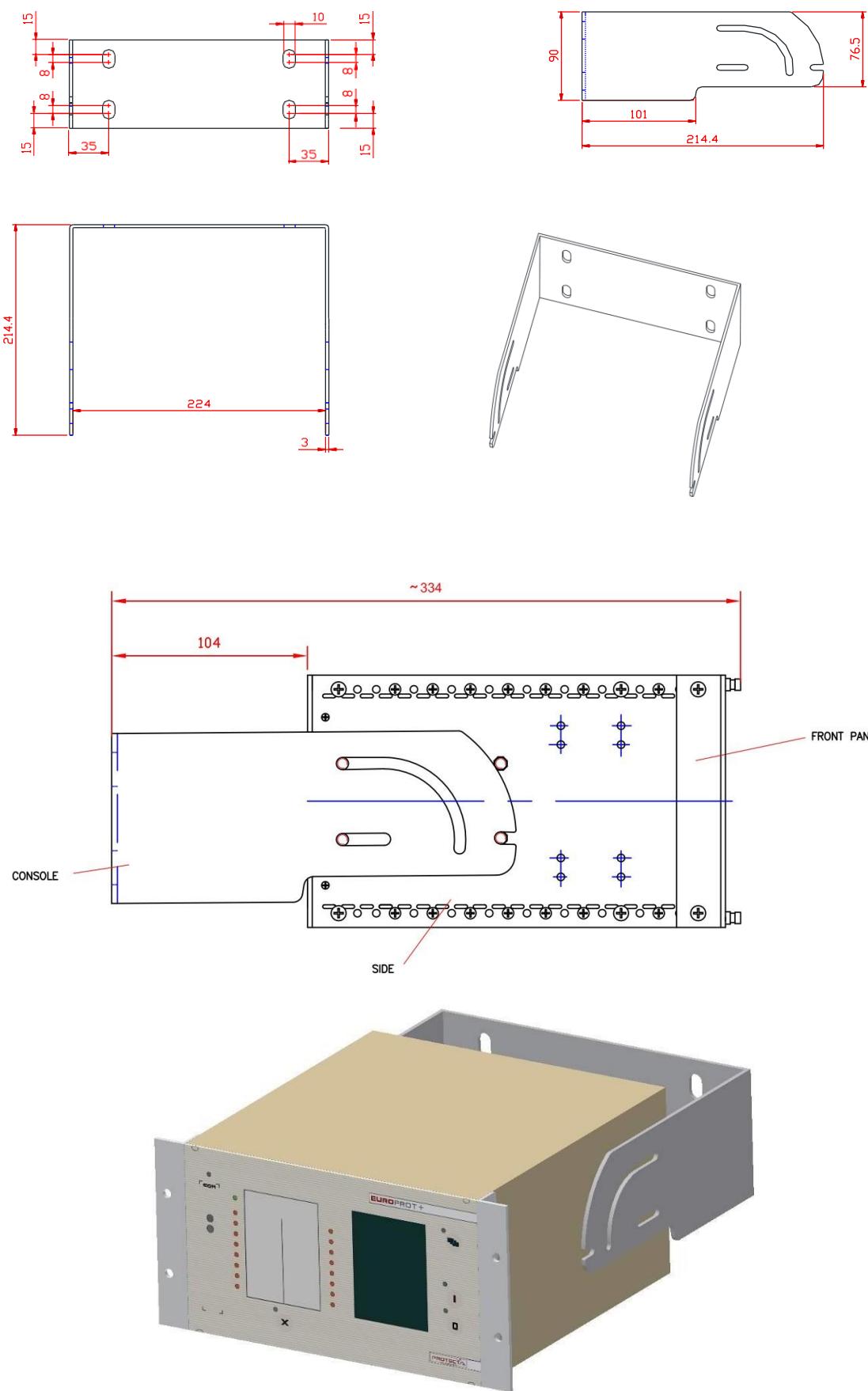


Figure 21-24 42 HP fold-down mounting

1.3.23.7.2. Fold-down mounting with terminals

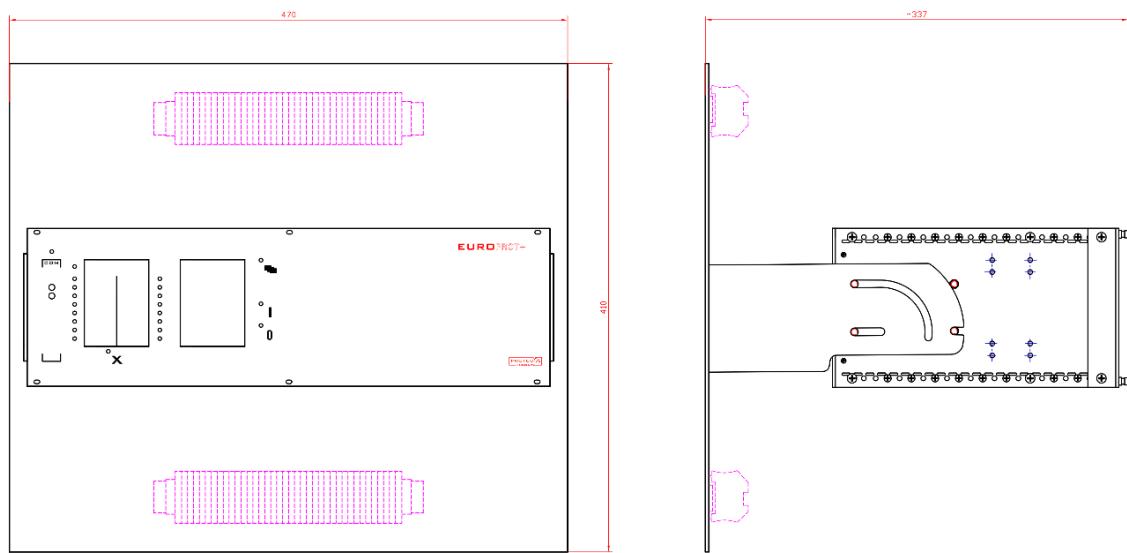


Figure 21-25 Fold-down mounting with terminals for 84HP devices

*fastening points are customized

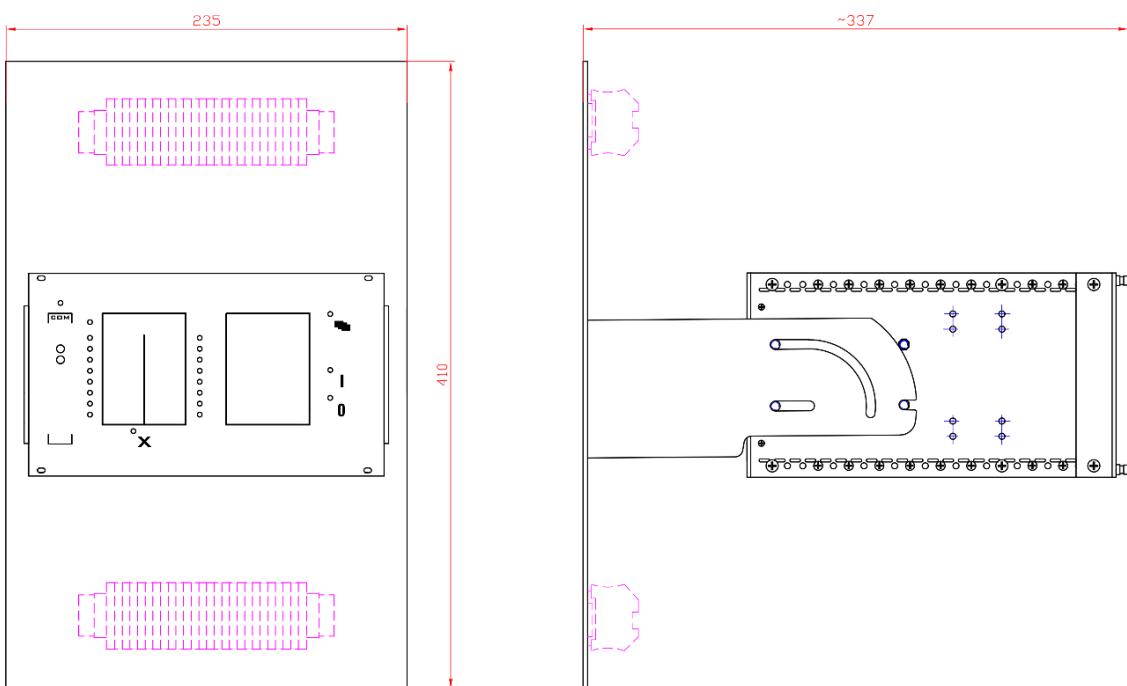
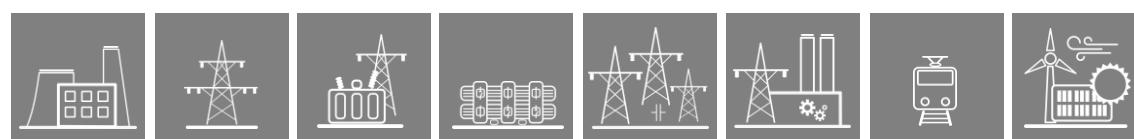



Figure 21-26 Fold-down mounting with terminals for 42HP devices

1.3.23.8. No mounting

“No mounting” means that the 84 HP and 42 HP devices do not have any mounting accessories on them.

This mounting method is only applicable if the device is for demonstration application.

For more information about this topic please contact our Application Team.
(application@protecta.hu)

IMPORTANT

The dimensions of the cut-outs applicable for the remote HMI are depending on which previously mentioned mounting method is used (flush mounting, semi-flush mounting or rack mounting).

1.3.23.9. Remote HMI devices

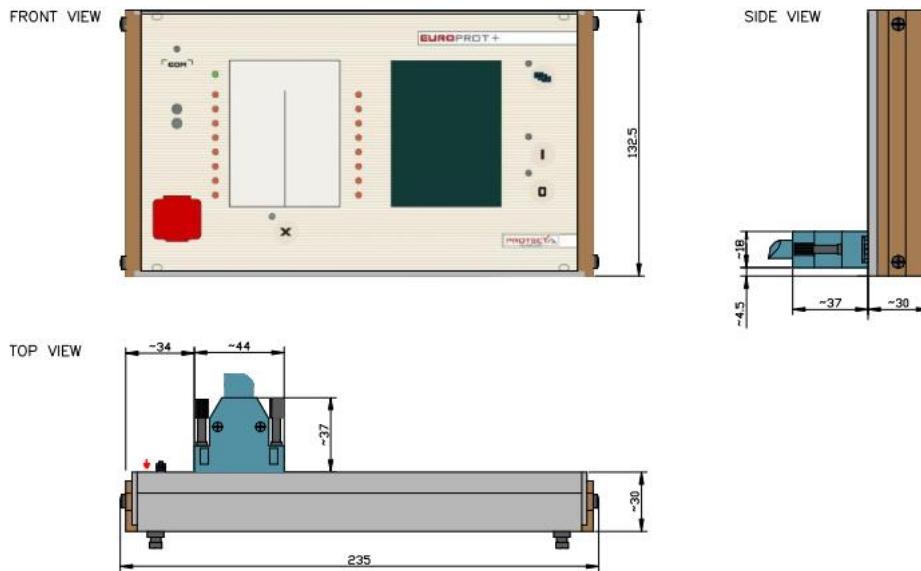


Figure 21-27 Dimensions for 42 HP wide remote HMI

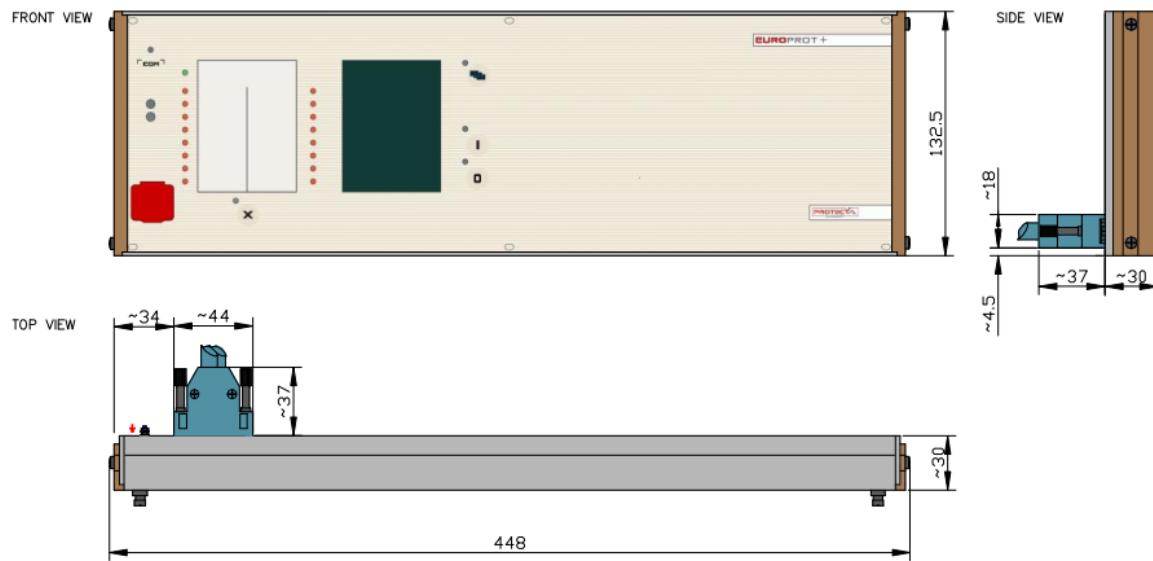
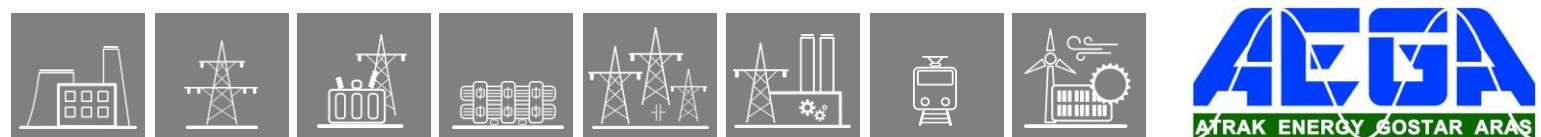
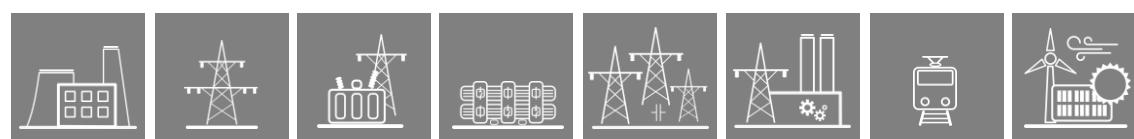



Figure 21-28 Dimensions for 84 HP wide remote HMI

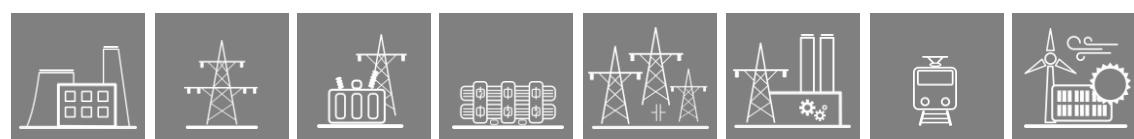
1.3.24. Product availability (special and obsolete modules)

In this chapter you can read a list of the modules that have not regular availability for any reason (being obsolete or being used only in special configurations).

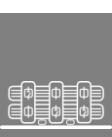
Special modules:


These modules can be ordered in case of special applications which are indicated for each module at its description in the previous chapters.

For more information about these devices please contact our Application Team.
(application@protecta.hu)


Optional connectors:

The optional connectors are indicated at each module's description in the previous chapters. If a module is to be shipped with an optional connector, the issue must be discussed during ordering.



MODULE TYPE	COMMENT	DATE
CPU+/0001	Legacy CPU card, not recommended for new configurations. Replacement: CPU+1211	2013-06-12
CPU+/0002	Legacy CPU card, not recommended for new configurations. Replacement: CPU+1111	2013-06-12
CPU+/0003	Legacy CPU card, not recommended for new configurations. Replacement: CPU+1101	2013-06-12
CPU+/0004	Legacy CPU card, not recommended for new configurations. Replacement: CPU+1201	2013-06-12
CPU+/0005	Legacy CPU card, not recommended for new configurations. Replacement: CPU+1281	2013-06-12
CPU+/0006	Legacy CPU card, not recommended for new configurations. Replacement: CPU+1381	2013-06-12
CT+/1155	Available only for special configurations.	2013-06-12
CT+/5152	Available only for OGYD bay unit configurations.	2013-06-12
VT+/2215	Available only for special configurations.	2013-06-12
O12+/2101	Available only for demonstration applications.	2013-06-12
O12+/4201	Available only for demonstration applications.	2013-06-12
R4S+/01	Available only for special configurations.	2013-06-12
R4S+/16	Available only for special configurations.	2013-06-12
TRIP+/1101	Obsolete module. Not recommended for new designs.	2013-06-12
PS+/1602	Available only for special configurations.	2013-06-12
HMI+/2401	Obsolete module. Not recommended for new designs.	2014-10-06

HMI+/2404	Smart Line S24 special selection modules.	2014-10-06
HMI+/2504	Smart Line S24 special selection modules.	2014-10-06
COM+/8882	Available only for special configurations.	2014-10-06
CT+/1111	Available only for special configurations.	2014-10-06
CT+/2500	Available only for special configurations.	2014-10-06
CT+/5153	Available only for special configurations.	2014-10-06
VT+/2212	Available only for special configurations.	2014-10-06
R8+/01	Available only for special configurations.	2014-10-06
R8+/A1	Available only for special configurations.	2014-10-06
R8+/C0	Available only for special configurations.	2014-10-06
R8+/FF	Available only for special configurations.	2014-10-06
R12+/4400	Available only for special configurations.	2014-10-06
R16+/0101	Available only for special configurations.	2014-10-06
R16+/0001	Available only for special configurations.	2014-10-06
R16+/A001	Available only for special configurations.	2014-10-06
PS+/4401	Available only for special configurations.	2014-10-06
CT+/2500	Obsolete module. Not recommended for new designs. Replacement: CT+1500.	2015-02-13
PSTP+/2102	Available only for special configurations.	2015-06-23
PSTP+/4202	Available only for special configurations.	2015-06-23
CT+/5111	Available only for special configurations.	2015-12-08
CT+/0101	Available only for special configurations. DEFL earth fault protection only.	2018-03-19
INJ+/0015	Available only for special configurations.	2018-03-19
CT+/5155	Available only for special configurations.	2018-03-26
VT+/2246	Available only for special configurations.	2018-03-26
AIC+/0201	Obsolete module. Not recommended for new designs.	2018-03-26
CT+/5111	Obsolete module. Not recommended for new designs.	2018-03-27
VS+/0031	Obsolete module. Not recommended for new designs.	2018-05-25

R1T+/0001	Available only for special configurations. DMD.	2018-10-05
CT+/5253	Available only for special configurations.	2018-10-05
42 HP housing	The length of the 42 HP box has been reduced from 242 mm to 223 mm. For more information about the previous size of the 42 HP box please see the Figure 22-1.	2018-12-18
AIC+/0200	Obsolete module. Not recommended for new designs.	2019-04-08
PS+/1030	Available only for special configurations.	2020-05-07
PS+/1060	Available only for special configurations.	2020-05-07
HMI+/5001	Obsolete module. Not recommended for new designs.	2020-06-04
HMI+/5002	Obsolete module. Not recommended for new designs.	2020-06-04
HMI+/3502 (for 42HP)	Obsolete module. Not recommended for new designs.	2020-06-04
CT+/1515	Available only for special configurations.	2020-06-04
CT+/5115	Available only for special configurations.	2020-06-04
CT+/5116	Available only for special configurations.	2020-06-04
CT+/5154	Available only for special configurations.	2020-06-04
PSF+/1001	Available only for special configurations.	2020-06-04
RTD+/0200	Available only for special configurations.	2020-06-04
RTD+/1200	Available only for special configurations.	2020-06-04
R4MC+/01	Available only for special configurations.	2020-06-04
PS+/4301	Obsolete module. Not recommended for new designs.	2020-06-04
84 HP housing	The depth of the 84 HP box has been reduced from 242 mm to 223 mm. For more information about the previous size of the 84 HP box, see the Figure 22-1.	2021-04-01
HMI+/3501	Obsolete module. Not recommended for new designs.	2021-04-20
HMI+/3502	Obsolete module. Not recommended for new designs.	2021-04-20
HMI+/5701	Obsolete module. Not recommended for new designs.	2021-04-20
HMI+/5702	Obsolete module. Not recommended for new designs.	2021-04-20
COM+/1202	Obsolete module. Not recommended for new designs.	2021-04-20
COM+/1324	Obsolete module. Not recommended for new designs.	2021-04-29
VT+/2212	Obsolete module. Not recommended for new designs.	2021-05-06
CT+/5154	Obsolete module. Not recommended for new designs.	2021-05-06
O16+/2401	Obsolete module. Not recommended for new designs.	2022-03-22
O16+/4801	Obsolete module. Not recommended for new designs.	2022-03-22

O16+/1101	Obsolete module. Not recommended for new designs.	2022-03-22
O16+/2201	Obsolete module. Not recommended for new designs.	2022-03-22

1.3.24.1. Previous 42HP and 84HP device housings

As of 2021, Q2, not only the 42HP, but the 84HP devices are shipped with shorter racks as well. Note that this is the only difference between the new and old housings. The new racks are shorter by 19 mm from the front, thus their depth is 223 mm instead of 242 mm.

The mounting methods described in Chapter 21 are valid for the previous racks as well, keeping in mind that the depth of the device is 19 mm bigger than that of the drawings. As an example, see the previous drawing of the flush mounting for 42HP and 84HP devices in Figure 22-1. As a comparison, the new, shorter rack is also drawn in light blue.

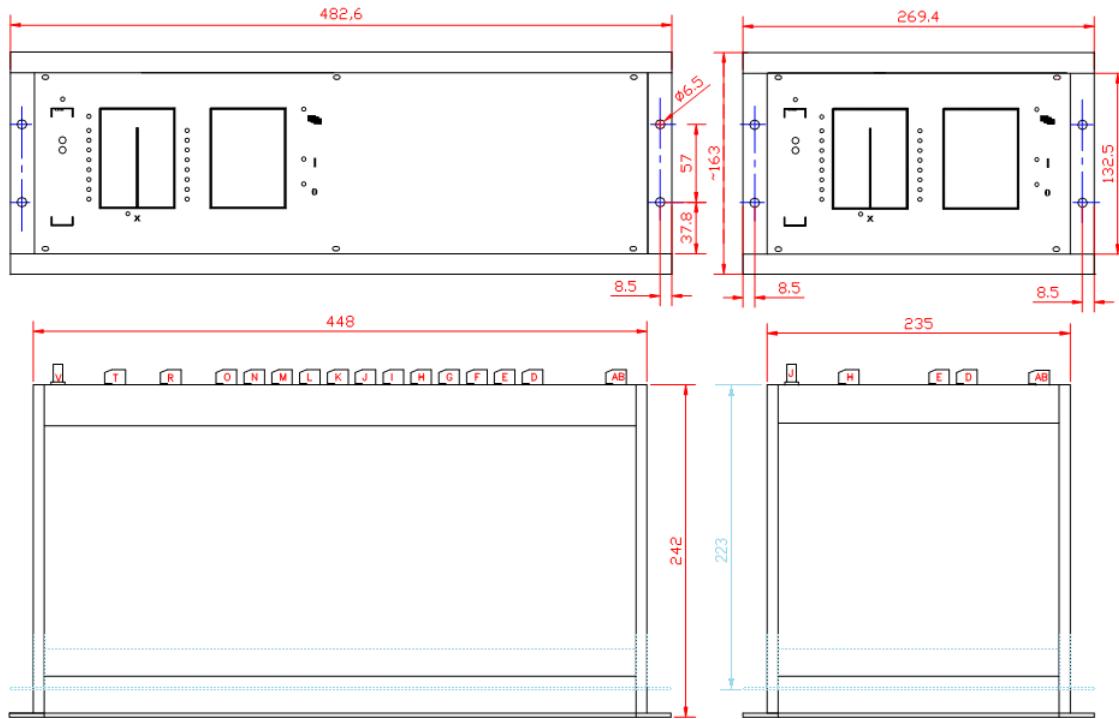
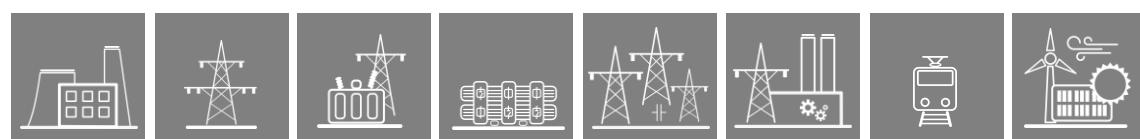



Figure 22-1 Dimensions for flush mounting of the previous 84HP and 42HP single rack, including the new (shorter) rack dimensions as well.

1.3.25. Remote I/O (RIO) server description

1.3.25.1. Introduction

Remote I/O (RIO) server is an IED, which provides remote binary inputs and outputs far from an EuroProt+ protection device.

Figure 1-1 Remote I/O device

Figure 1-2 Front view and rear view with fastening for mounting rail

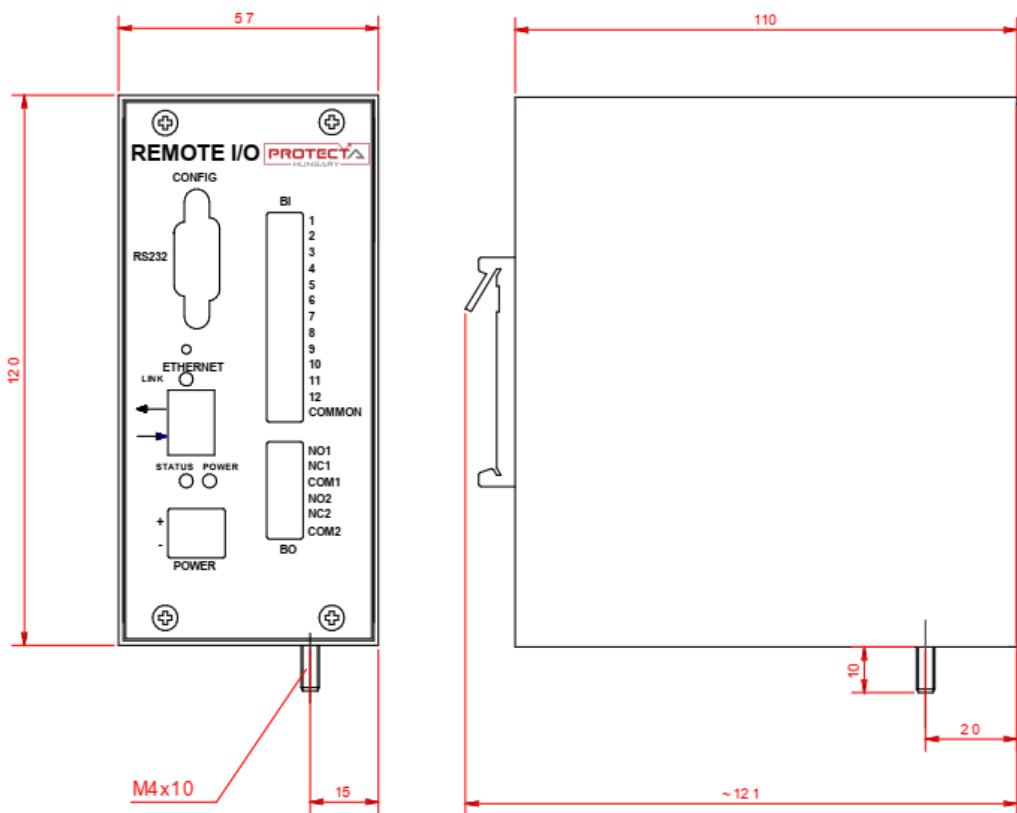


Figure 1-3 Remote I/O dimensions

1.3.25.2. Application

1.3.25.2.1. Connectors, LEDs

The connectors of the device are illustrated in the following figure.

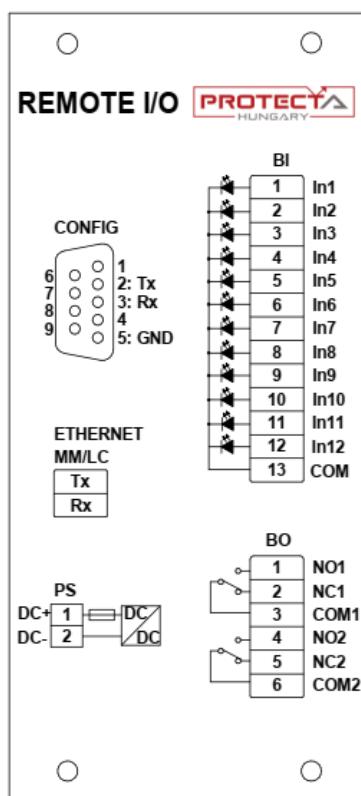
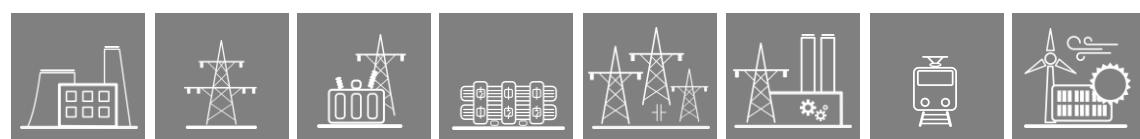



Figure 2-1 Connectors of the device

The RIO server has three LED indicators:

- **LINK**: located at the Ethernet connector; it shows active communication (green color)
- **POWER**: located above the power connector; it lights up if the device is operating (green color)
- **STATUS**: located also above the power connector. The behavior and color of this LED shows different situations:
 - Blinking **red**: there are no clients connected
 - Blinking alternatively **red-green**: the server has one client connected
 - Blinking **green**: two or more clients are connected

1.3.25.2.2. Wiring, usage

The device communicates with the EP+ device using the MODBUS/TCP protocol, via either of the COM+/1202, COM+/1324, COM+/1335, COM+/6603 or COM+/6663 modules.

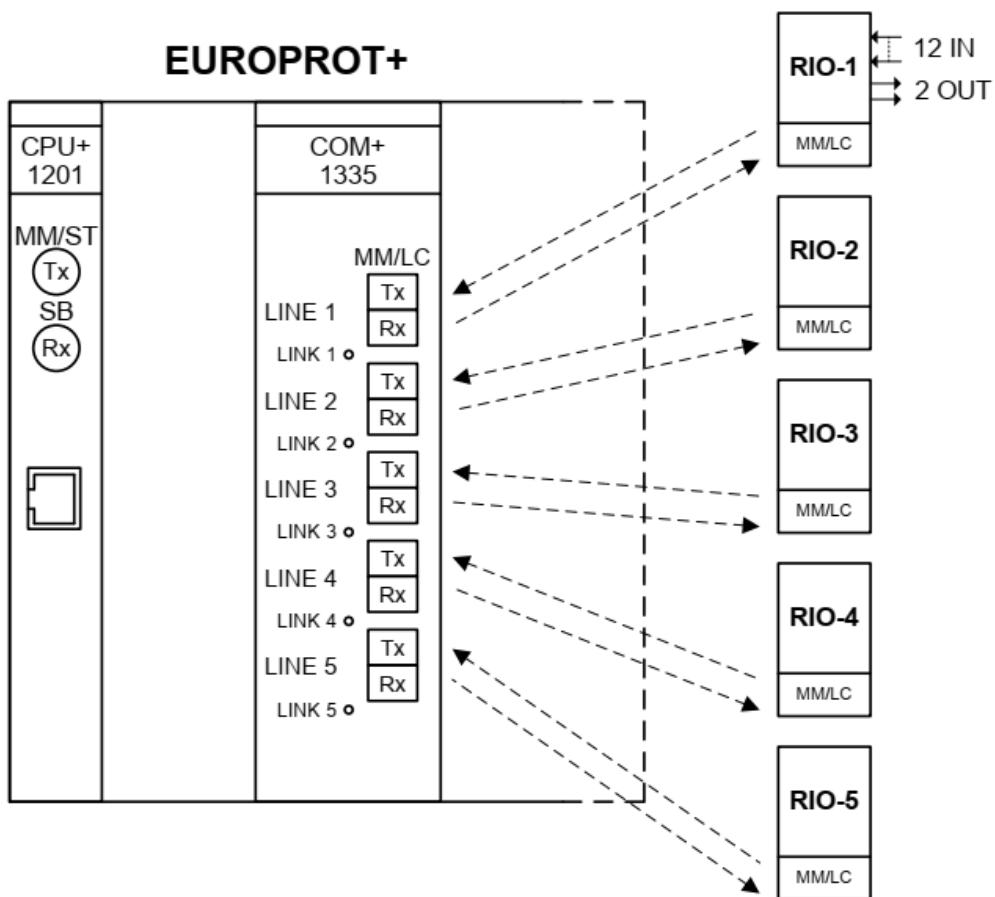



Figure 2-2 Wiring of the Remote I/O-s

The RIO inputs and outputs appear among the other binary inputs and outputs of the EuroProt+ device, and they can be utilized the same way.

1.3.25.3. Sub-modules

The RIO server consists of two mixed function modules:

- SCPU/PS: combination of a CPU and power supply module
- SO12/R2: binary I/O module with 12 inputs and 2 relay outputs

1.3.25.3.1. SCPU/PS sub-module

The SCPU/PS module contains all the control, communication and the power supply functions of the device.

1.3.25.3.1.1. CPU

Table 3-1 Technical data of the RIO CPU

CPU TYPE	ETHERNET INTERFACE	SERVICE PORT
SCPU+0011	MM/LC 1300 nm, 50/62,5/125 µm connector, 100Base-FX	RS232*

*The service port labeled "CONFIG" is only for factory usage

1.3.25.3.1.2. Power supply, external MCB

Table 3-2 Technical data of the RIO power supply

PS TYPE	INPUT VOLTAGE	NOMINAL POWER	INPUT VOLTAGE INTERRUPTION TIME	INRUSH CURRENT (< 0.1 s)	CONNECTOR TYPE
PS+1101	65-180 V DC	9 W	min. 140 ms @ 110 V DC input voltage	< 10 A	Weidmüller BLA 2/180
PS+2301	176 – 264 V DC 160 – 250 V AC	9 W	min. 50 ms @ 230 V AC input voltage	< 10 A	Weidmüller BLA 2/180

The power supply must be protected by an **external midget circuit breaker**. Note that it is not part of the RIO device:

- Characteristics: **6A C**

1.3.25.3.2. SO12/R2 sub-module

The SO12/R2 module contains 12 binary inputs in one grounding group, and 2 relay outputs with dry contacts.

1.3.25.3.2.1. Binary inputs

Main features:

- Digitally filtered per channel
- Current drain approx.: 2 mA per channel

Table 3-3 Technical data of the binary inputs

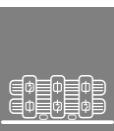
BI TYPE	CHANNEL NUMBER	TIME SYNC.	RATED VOLTAGE	THERMAL WITHSTAND VOLTAGE	CLAMP VOLTAGE	CONNECTOR TYPE
SO12+4801	12	-	48 V	72 V	falling 0.71 U_N rising 0.76 U_N	Weidmüller BL 3.5/13/180
SO12+1101	12	-	110 V	250 V	falling 0.7 U_N rising 0.73 U_N	Weidmüller BL 3.5/13/180

Thermal withstand voltage: continuous with 60 % of the input channels energized.


1.3.25.3.2.2. Binary outputs

Main features:

- Breaking capacity, (L/R = 40 ms) at 220 V DC: 0.2 A
- Breaking capacity, (L/R = 40 ms) at 110 V DC: 0.3 A


Table 3-4 Technical data of the relay outputs

BO TYPE	RATED VOLTAGE	CONTINUOUS CARRY	CONTACT VERSIONS	GROUP ISOLATION	CONNECTOR TYPE
R2+0001	250 V AC/DC	6 A	CO	2 independent	Weidmüller BL 3.5/6/180

1.3.25.4. General data

- Storage temperature: - 40 °C ... + 70 °C
- Operation temperature: - 20 °C ... + 55 °C
- Humidity: 10 % ... 93 %
- Altitude: up to 2000 m
- Atmospheric pressure: 86 ... 106 kPa

1.3.25.4.1. Standard conformance

- Electrostatic discharge immunity (ESD), IEC-EN 60255-26:2013, Level 4
 - Test voltages: 15 kV air discharge, 8 kV contact discharge
- Radiated, radio-frequency, electromagnetic field immunity, IEC-EN 60255-26:2013 Level 3
 - Test field strength: 10 V/m
- Electrical fast transient/burst immunity (EFT/B), IEC-EN 60255-26:2013, Level 4
 - Test voltage: 4 kV
- Surge immunity test, IEC-EN 60255-26:2013
 - Test voltages: 2 kV line-to-earth, 1 kV line-to-line
- Immunity to conducted disturbances, induced by radio-frequency fields, IEC-EN 60255-26:2013, Level 3
 - Test voltage: 10 V
- Damped oscillatory wave immunity test, IEC-EN 60255-26:2013
 - Test frequency: 1 MHz
 - Test voltage: 2.5 kV in common mode, 1 kV in differential mode
- Voltage dips, short interruptions and voltage variations immunity, IEC-EN 60255-26:2013
 - Voltage dips: 40 % (200 ms), 70 % (500 ms), 80 % (5000 ms)
- Ripple on d.c. input power port immunity, IEC-EN 60255-26:2013
 - Level 4, 15 % of rated d.c. value
- Power frequency magnetic field immunity test, IEC-EN 60255-26:2013, Level 5
 - Test field strength: 100 A/m continuous, 1000 A/m for 3 s
- Power frequency immunity test on the binary inputs, IEC-EN 60255-26:2013, Class A
 - Test voltages: 300 V in common mode, 150 V in differential mode
- Insulation tests, IEC-EN 60255-27:2013
 - Impulse voltage test
 - Test levels: 5 kV (1 kV for transducer and temperature measuring inputs)
 - Dielectric test
 - Test levels: 2 kV AC 50 Hz (0.705 kV DC for transducer inputs)
 - Insulation resistance
 - Insulation resistance > 15 GΩ
- Radiated emission, IEC-EN 60255-26:2013
Limits:
 - 30 MHz to 230 MHz: 50 dB(µV/m) quasi peak, 3 m
 - 230 MHz to 1 000 MHz: 57 dB(µV/m) quasi peak, 3 m
 - 1 GHz to 3 GHz: 76 dB(µV/m) peak, 3 m
 - 3 GHz to 6 GHz: 80 dB(µV/m) peak, 3 m
- Conducted emission, IEC-EN 60255-26:2013
Limits:
 - 0,15 MHz to 0,50 MHz: 79 dB(µV) quasi peak, 66 dB(µV) average
 - 0,5 MHz - 30 MHz: 73 dB(µV) quasi peak, 60 dB(µV) average
- Vibration, shock, bump and seismic tests on measuring relays and protection equipment
 - Vibration tests (sinusoidal), Class I, IEC 60255-21-1:1988
 - Shock and bump tests, Class I, IEC 60255-21-2:1988
 - Seismic tests, Class I, IEC 60255-21-3:1993

1.3.25.5. Mechanical data

1.3.25.5.1. General mechanical data

- Construction
 - Painted steel surface
- IP protection:
 - IP2x
- Size:
 - See Figure 1-3 for the device dimensions
- Weight:
 - 0.7 kg

1.3.25.5.2. Connectors

Table 5-1 Connectors on the RIO

CONNECTOR NAME	CONNECTOR TYPE	STRIP LENGTH [MM]	CONDUCTOR AREA [MM ²]	CONDUCTOR DIAMETER [MM]	TIGHTENING TORQUE [NM]	MINIMUM BEND RADIUS*
BLA	Weidmüller BLA 2/180	7	0.2 – 1.5 solid: 0.2 – 2.5	0.5 – 1.4 solid: 0.5 – 1.8	0.4 – 0.5	3 × OD**
BL 3.5	Weidmüller BL 3.5/6/180 BL 3.5/13/180	6	0.2 – 1.5	0.5 – 1.4	0.2 – 0.25	3 × OD**
PE FASTON TERMINAL	TE Connectivity 6.3x0.8	7	min. 4	min. 2.3	-	3 × OD**

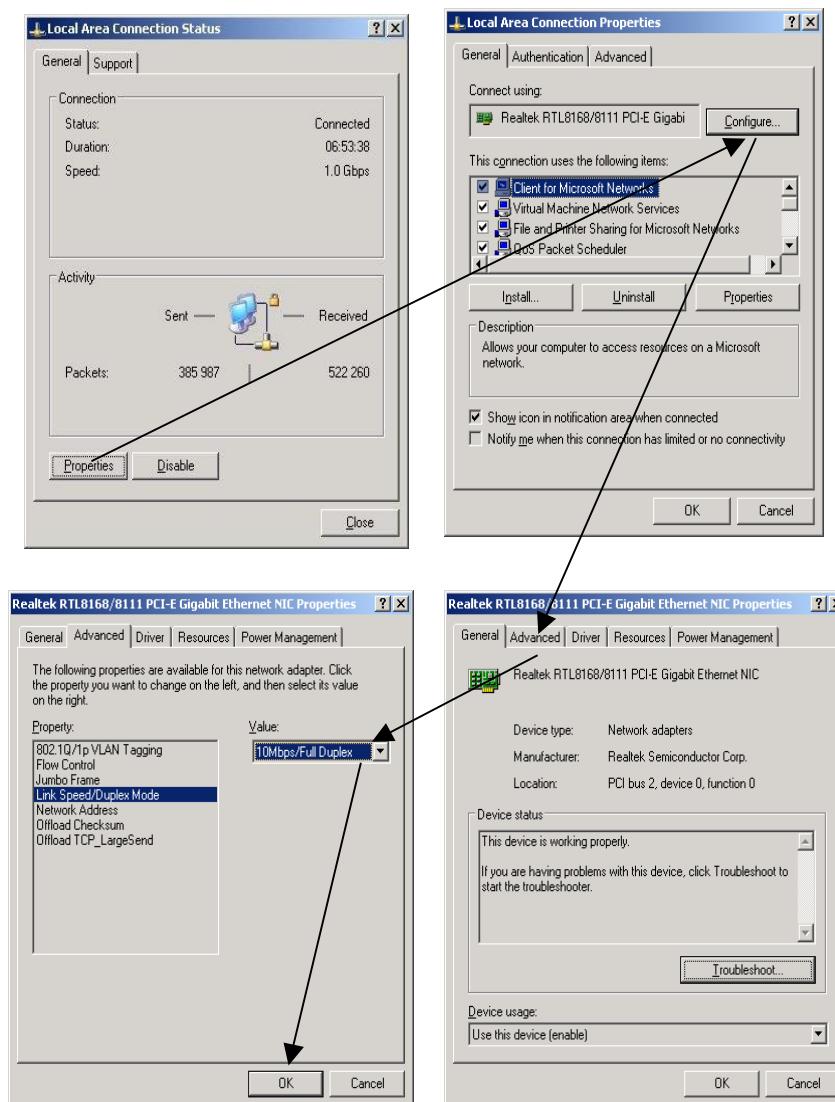
* Bend radius is measured along the inside curve of the wire or wire bundles.

** OD is the outer diameter of the wire or cable, including insulation.

The tightening torque of the screw for protective earth connection must be approx. 5 Nm.

During the installation, make sure that the shortest possible length for PE (Protective Earth) cable.

The minimum distance between the device and its wire channel must be at least 3 cm.

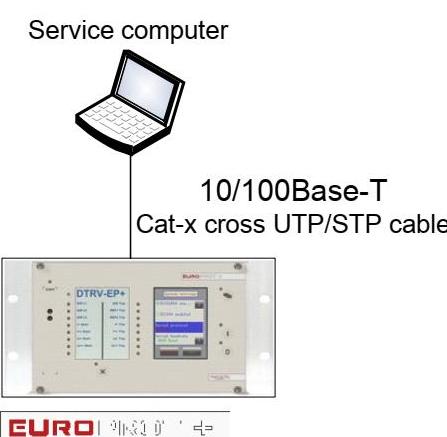

1.3.26. Technical notes on EOB interoperability

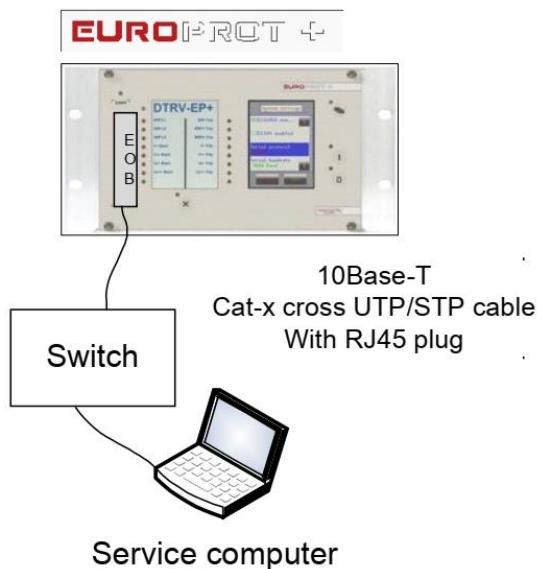
1.3.26.1. Description

We experienced some interoperability issues regarding front panel communication with EP+ devices. The link establishment procedure of the ethernet communication become unstable with certain type of NICs (Network Interface Card) of network devices. Network devices with 10/100Base-T speed support has no limitation but devices with 1000Base-T (called gigabit) may cause this link establishment failure. In this case the operating system periodically signals that interface is connected, then disconnected, then connected etc.

1.3.26.2. EOB Troubleshooting

- force NIC speed and mode to 10Base-T Full-duplex (setting method may depend on Your PC hardware configuration) on Your PC. Local Area Network settings can be found at:
 - WindowsXP: Control Panel\Network Connections\Local Area Connection
 - Windows 7: Control Panel\All Control Panel Items\Network and Sharing Center




1.3.26.3. Workaround

- using station bus interface connector at the front panel of the CPU card
- if the device equipped with 100Base-Fx station bus interface then You can connect Your computer via a third-party media converter unit
- if the device equipped with 10/100Base-Tx station bus interface (RJ45) then connect Your computer directly to the EP+ via a crossed CATx cable

Service computer



- using EOB at the HMI:
 - in case of unstable link with Your PC apply a third-party external 10/100Base-T switch with one port connected via EOB to the EP+ and other port connected to Your PC via a CATx cable.

1.3.26.4. Further details

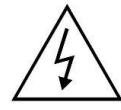
For getting started guide and IP configuration download: http://www.protecta.hu/epp-prelim/QuickStart/Quick_Start_Guide_V1.0.pdf

1.3.27. EP+ Installation manual

USED SYMBOLS

Symbols on devices:

Test voltage: 2 kV



Protective conductor terminal

Do not dispose of this device

Symbols in this document:

Caution, risk of electric shock


Caution, hot surface

Caution, refer to the documentation

Do not dispose of this device

1.3.27.1. Introduction

This manual is intended to provide instruction for proper device installation, which includes mechanical mounting and electrical wiring. Furthermore, the information provided here will strongly support commissioning, maintenance, and deinstallation work as well. This document's targeted user groups are skilled electrical professionals executing installation works and commissioning with EuroProt+ devices.

Given that the EuroProt+ product family has a modular design, the instructions provided here can cover all configurations. Therefore, this manual shall be used in conjunction with the "EuroProt+ Hardware description" document, which includes essential information about all hardware components of the product.

1.3.27.2. Equipment handling

1.3.27.2.1. Unpacking

Inspect the package for transport damages. Carefully remove the packing material without applying excessive force.

1.3.27.2.2. Visual inspection

Identify the product by reading the order code. This can be found on the device nameplate located mostly on the right side of the device in the top right corner and shall be identical to your order.

Picture 2-2 Device nameplate

The protection device may have loose items packed in a different box based on the configuration. Check, that these items are also included in the shipment.

Visually inspect all unpacked items for damages, water ingress, or any sign of external impact. If you discover any transport damage, please notify Protecta Ltd. first and do not start any further work on the equipment.

1.3.27.2.3. Storage

If temporary storage is required before installation, please store the device in its original packing in a dry and clean place. The required environmental conditions can be found in the "General data" section of the "EuroProt+ Hardware description" document.

1.3.27.3. Mounting

1.3.27.3.1. Tools for mounting

The tools and screws necessary for mounting depend on the method of the mounting, see the "Mounting methods" section of the "EuroProt+ Hardware description" document.

Assuming the panel or cubicle is ready for installation of the device, screwdrivers matching the screws used, pliers, wrenches, etc. are necessary. For safety aspects, mechanical protective gloves shall be used to avoid injuries.


1.3.27.3.2. Environmental conditions

Make sure, that the mounting location fulfils environment requirements stated in the "General data" section of the "EuroProt+ Hardware description" document. The IP protection class of the device shall fit the surrounding environment at the place of installation. It is also important to have space around the device to support conventional cooling (See 3.3).

1.3.27.3.3. Mounting location

Before mounting the device make sure, that suitable space is available in the location of installation. Cutouts shall fit the device rack dimensions and it is recommended to leave 80mm free space behind the IED for the wiring.

The minimum distance between an EP+ device and its wire channel must be at least 3 cm. The minimum distance between two EP+ devices must be at least 10 cm.

1.3.27.3.4. Mounting the device

The EuroProt+ product line utilizes different rack sizes and depending on that different mounting methods. An overview of the rack sizes with dimensions and mounting methods can be found in the “Mounting methods” section of the “EuroProt+ Hardware description” document.

During the installation make sure that the shortest possible length for PE (Protective Earth) cable routing is applied.

1.3.27.3.5. Safety aspects

1.3.27.3.5.1. Earth connections

1.3.27.3.5.1.1. Protective earth

The device shall be connected to the station earth system with a minimum of 2,5 mm² cross-section solid or stranded wire. A 6,3 mm (1/4 inch) female flat connector (according to IEC 61210) shall be used crimped to the earthing wire. During the installation make sure that the shortest possible length for PE (Protective Earth) cable routing is applied.

The earth connection of the device is situated at all kinds of Power supply modules. In the case of more Power supply modules, all of them shall be earthed.

The protective earth connections should not be removed when the equipment is energized.

Picture 3-5-1-1 Earth connection point of the device at the Power supply module

1.3.27.3.5.1.2. Stranded wires

Soft soldering of stranded wires is not allowed due to the cold flow of the solder material.

Loose strands of stranded wires can cause fire risk or electric shock. Insulated crimp terminals shall be used.

1.3.27.3.5.1.3. Cable screen connection

The screen of the telecommunication cables connected directly to the device shall be terminated to the earthing connection point of the corresponding module.

Picture 3-5-1-3 An example of the cable screen connection

1.3.27.3.5.1.4. CT and VT circuits

The CT and VT circuits to be connected to the device shall be connected to the station earth system.

1.3.27.3.5.2. Connections of the device

Before connecting the wires, make sure that all voltage levels correspond to the device ratings. It is particularly important by the power supply, trip and binary input, CT and VT module

Use only the connectors provided to the device or identical ones.

The CT connectors shall be fixed with screws provided. During the operation of the device, the CT connectors can be disconnected only after the CT circuits having short-circuited.

1.3.27.3.5.3. Optical ports

Take adequate measures to protect your eyes and do not view directly into optical ports.

The fiber optics cables are vulnerable. Sharp bending can damage them. The minimum bending radius can be between 15 cm and 25 cm approximately, depending on the type and the material of the cable. For details see the datasheets of the fiber optics cables to be installed. The fiber shall not be twisted or bent. When connecting or disconnecting the cable always hold the connector, not the cable.

1.3.27.3.5.4. Removing and changing modules

Before removing and changing modules first the power supply voltage of the device shall be disconnected. Then all the energizing quantities connected to each module of the device shall be disconnected. Before removing the connectors of the CT modules, the CT circuits shall be short-circuited and disconnected.

The protective earth connection can be disconnected last if it is necessary (e.g. when removing a Power supply module).

The devices contain components that are sensitive to electrostatic discharges. ESD wrist strap shall be worn during any operations with modules.

Some of the modules can operate at high internal temperatures. Remove these modules carefully to avoid any burn injury. Take care of the possible high temperature at each module.

The modules have got sharp edges. Remove them carefully to avoid injury.

After changing a module, it shall be fixed with the screws provided with a torque of 0,5 Nm. Use Philips 2 screwdriver.

1.3.27.4. Wiring

1.3.27.4.1. Tools for connecting

Screwdrivers for the connectors: blade 0,6/3,5 mm, 0,4/2,5 mm.

Cutter, stripper, crimper tools to prepare the connecting end of the wires.

1.3.27.4.2. Connectors

The “Connectors” section of the “EuroProt+ Hardware description”

provides information about the required conductor dimensions and connecting methods. The “Connectors” table shall be used together with the other sections describing the different modules.

1.3.27.5. Deinstallation and Repair

1.3.27.5.1. Deinstallation

Before removing the device make sure, that all incoming power supply and control voltages are switched off. The earth connection of the device shall be disconnected last.

1.3.27.5.2. Repair

Thanks to its modular design, many hardware problems can be fixed by replacing single modules. By executing this procedure note, that the printed board's surface may get hot during normal operation.

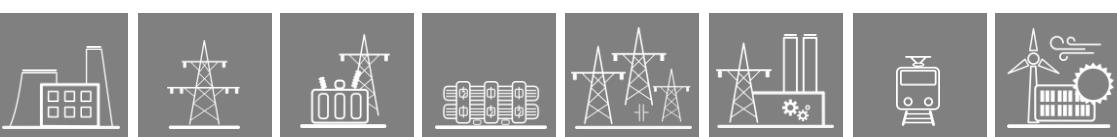
In addition, attention shall be paid to the sharp edges of the modules to avoid minor injuries on the hand.

1.3.27.5.3. Disposal

Removed IEDs shall be handed over to a local electronic waste handler for proper disposal and recycling.

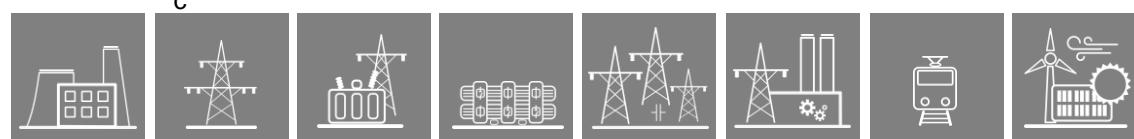
Table 5-3 Disposal of the components and parts

IED	PARTS	MATERIAL	METHOD OF DISPOSAL
Enclosure	Metal sheets, fastening elements	Aluminum, steel	Separation and recycling
Modules	Metallic parts, fastening elements	Aluminum, steel	Separation and recycling
	Mounted PC boards	Plastic, various electronic elements	Separation and recycling
	Connectors	Plastic, various metals	Separation and recycling
	Transformers, coils	Iron, copper, plastic, paper	Separation and recycling
	Relays	Iron, copper, plastic, other metals	Separation and recycling
Package	Box	Cardboard	Recycling
Attachments	Manuals, certificates	Paper	Recycling



2. Function and I/O listing

The functions listed in Table 2-1 on the next page are the ones that are present most commonly in the configurations, thus they can be considered as factory default arrangements. The hardware information corresponds to the maximum available number of digital I/O, and the default number of analog inputs.

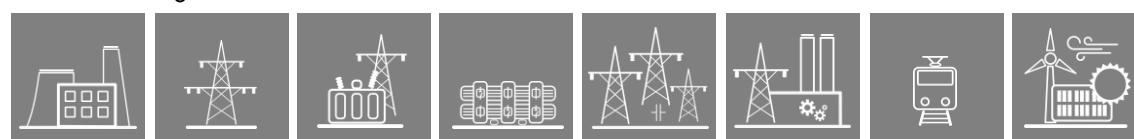

For short descriptions for each function please refer to Chapter 3. Detailed information is available in their respective stand-alone descriptions on the Protecta website after logging in.

*The 'INST.' column contains the numbers of the pre-configured function blocks in the factory configuration. These numbers may be different in order to meet the user's requirements.

Distributed feeder protection, control & automation														
HARDWARE	FAMILY			EuroProt+										
	TYPE			DTIVA										
	CONFIGURATION			CT inputs	E1	E2	E3	E4	E5	E6	E7	E8	E9	E10
				VT inputs		4	4	4	4	4	4	4	4	4
FUNCTIONALITY	Digital inputs (max)			136	128	128	128	128	128	128	136	136	128	128
	Signaling relay outputs (max)			60	60	60	60	60	60	60	60	60	60	
	Fast Trip outputs (max)			12	12	12	12	12	12	12	12	12	12	
	Function name	IEC	ANSI	*INST.	E1	E2	E3	E4	E5	E6	E7	E8	E9	E10
	Distance protection MV	Z <, FL	21	1				✓		✓				
	Teleprotection		85	1						✓				
	Switch onto fault preparation function			1			✓	✓		✓				
	Overexcitation	V/Hz	24	1									✓	
	Synchrocheck	SYNC	25	1			✓	✓		✓		✓		
	Definite time undervoltage protection	U <, U <<	27	2		✓	✓	✓	✓	✓	✓	✓	✓	Op.
Protection	Positive sequence undervoltage protection	U1 <	27D	1								✓		
	Directional overpower	P >	32	1		✓	✓	✓	✓		✓			✓
	Directional underpower	P <	37	1		✓	✓	✓	✓		✓			✓
	Loss of load (underrun) protection	I <	37	1							✓			✓
	Negative sequence overcurrent protection	I2 >	46	1		✓	✓	✓	✓	✓	✓	✓		✓
	Negative sequence overvoltage protection	U2 >	47	1		✓	✓	✓	✓		✓	✓		
	Motor startup supervision	I ² start	48	1							✓			
	Thermal protection line	T >	49	1		✓	✓	✓	✓	✓	✓			✓
	Thermal protection motor	T >	49	1							✓			
	Three-phase instantaneous overcurrent protection	I >>>	50	1		✓	✓	✓	✓	✓	✓	✓		✓
	Residual instantaneous overcurrent protection	Io >>	50N	1		✓	✓	✓	✓	✓	✓	✓		✓
	Breaker failure protection	CBFP	50BF	1		✓	✓	✓	✓	✓	✓	✓		✓
	Three-phase time overcurrent protection	I >, I >>	51	2		✓	✓	✓	✓	✓	✓	✓		✓
	Residual time overcurrent protection	Io >, Io >>	51N	2		✓	✓	✓	✓	✓	✓	Op.	✓	✓
	Definite time overvoltage protection	U >, U >>	59	2		✓	✓	✓	✓	✓	✓	✓	✓	Op.
	Residual overvoltage protection	Uo >, Uo >>	59N	2		✓	✓	✓	✓	✓	✓	✓	✓	Op.
	Starts per hour	I ² t	66	1							✓			
	Three-phase directional overcurrent protection	I Dir >, I Dir >>	67	2			✓	✓	✓	✓	✓			
Control & supervision	Residual directional overcurrent protection	Io Dir >, Io Dir >>	67N	2			✓	✓	✓	✓	✓			
	Inrush detection and blocking	I2h >	68	1		✓	✓	✓	✓	✓	✓			
	Out-of-step	ΔZ/Δt	78	1										
	Auto-reclose MV	0 -> 1	79	1		✓	✓	✓	✓	✓	✓			
	Overfrequency protection	f >, f >>	81O	2			✓	✓	✓	✓	✓		✓	✓
	Underfrequency protection	f <, f <<	81U	2			✓	✓	✓	✓	✓		✓	✓
	Rate of change of frequency protection	df/dt	81R	1			✓	✓	✓	✓	✓		✓	✓
	Vector jump	ΔΦU >		1									✓	
	Line differential	3IdL >	87L	1					✓	✓				
	Motor differential	3IdM >	87M	1							✓			
Measuring	Restricted earth fault	REF	87N	1							Op.*			
	Transformer differential	3IdT >	87T	1							Op.*			
	Trip Logic		94	1		✓	✓	✓	✓	✓	✓	✓	✓	✓
	Lockout Trip Logic		86	1		Op.	Op.	Op.	Op.	Op.	Op.	Op.	Op.	Op.
	Busbar sub-unit					Op.	Op.	Op.						
Control & supervision	Bay control					✓	✓	✓	✓	✓	✓	✓	✓	✓
	Circuit breaker wear					✓	✓	✓	✓	✓	✓	✓	✓	✓
	Circuit breaker control					✓	✓	✓	✓	✓	✓	✓	✓	✓
	Disconnector control					✓	✓	✓	✓	✓	✓	✓	✓	✓
	Ethernet Links					Op.	Op.	Op.	Op.	Op.	Op.	Op.	Op.	Op.
	Trip Circuit Supervision		74TC			✓	✓	✓	✓	✓	✓	✓	✓	✓
	Fuse failure (VTS)		60	1					✓	✓	✓	✓		Op.
	Current unbalance protection		60	1		✓	✓	✓	✓	✓	✓	✓	✓	✓
	Current input								✓	✓	✓	✓		Op.
	Voltage input					✓	✓	✓	✓	✓	✓	✓	✓	✓
	Line measurement					✓	✓	✓	✓	✓	✓	✓	✓	✓

Table 2-1 Basic functionality and I/O

3. Software configuration


3.1. Protection functions

The E10-Feeder configuration measures three phase currents, the zero sequence current component and optionally three phase voltage. The realized and optional current- and voltage- based protection functions are listed in the Table below.

Protection functions	IEC	ANSI	E10-Feeder
Three-phase time overcurrent protection	I >, I >>	51	X
Residual time overcurrent protection	Io >, Io >>	51N	X
Capacitor unbalance protection for blocks in bridge connection			*X
Capacitor unbalance protection for blocks in double star connection			*X
Loss-of-load (undercurrent) protection function	I <	37	X
Capacitor overvoltage protection function			op.
Definite time undervoltage protection	U <, U <<	27	op.
Definite time overvoltage protection	U >, U >>	59	op.
Residual overvoltage protection	Uo >, Uo >>	59N	op.
Current unbalance protection		60	X

*The suitable function can be selected by the customer.

Table 1 The protection functions of the E10-Feeder configuration

3.1.1. Definite time undervoltage protection function

3.1.1.1. Application

The definite time undervoltage protection function measures three voltages. If any of them is below the level defined by parameter setting value (and above the defined minimum level), then a start signal is generated for the phases individually.

3.1.1.2. Mode of operation

The function generates start signals for the phases individually. The general start signal is set if the voltage in any of the three measured voltages is below the preset parameter setting value (and above the defined minimum level).

Note that in medium voltage applications the function uses the phase-to-phase voltages by default.

The function generates a trip command only if the time delay has expired and the parameter selection requires a trip command as well.

3.1.1.3. Operating characteristics

$$t(G) = t_{OP} \text{ when } G_{\min} < G < G_s$$

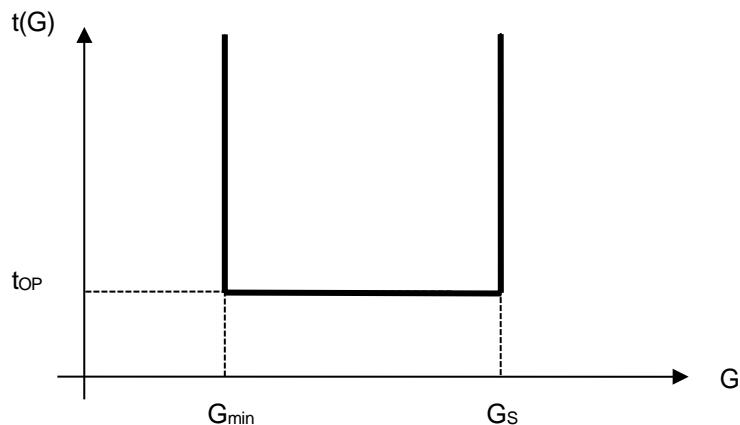


Figure 1-1 Undervoltage independent time characteristic

where	
t_{OP} (seconds)	theoretical operating time if $G_{\min} < G < G_s$, fix, according to parameter setting value,
G	measured value of the characteristic quantity, Fourier base harmonic of the phase voltages (or phase-to-phase voltages),
G_s	setting value of the characteristic quantity.

3.1.1.4. Structure of the definite time undervoltage protection algorithm

Fig.1-2 shows the structure of the definite time undervoltage protection (TUV27) algorithm.

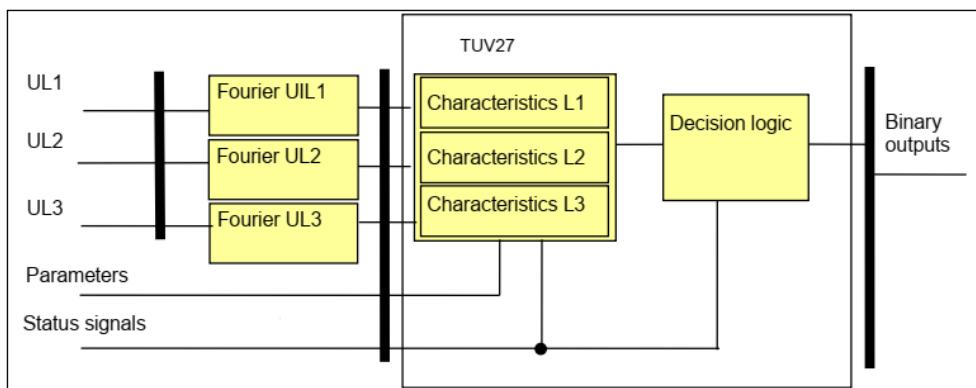


Figure 1-2 Structure of the definite time undervoltage protection algorithm

The **inputs** are

- the RMS values of the fundamental Fourier component of three phase (or phase-to-phase) voltages,
- parameters,
- status signals.

The **outputs** are

- the binary output status signals.

The **software modules** of the differential protection function:

Fourier calculations

These modules calculate the basic Fourier components of the phase voltages individually (not part of the TUV27 function). In medium voltage applications these are changed to phase-to-phase voltages.

Characteristics

This module calculates the required time delay based on the Fourier components of the phase (or phase-to-phase) voltages.

Decision logic

The decision logic module combines the status signals to generate the trip command of the function.

The following description explains the details of the individual components.

3.1.1.5. The Fourier calculation (Fourier)

These modules calculate the basic Fourier components of the phase voltages individually. They are not part of the TUV27 function; they belong to the preparatory phase.

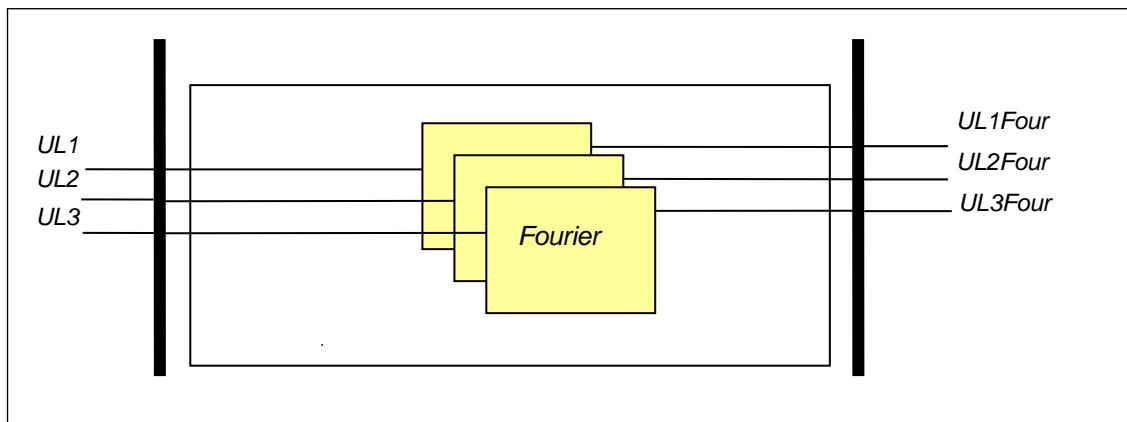
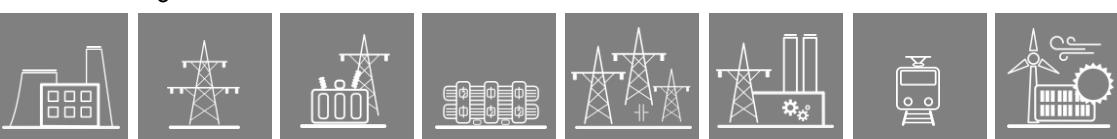



Figure 1-3 Schema of the Fourier calculation

The **inputs** are the sampled values of the three phase voltages (UL1, UL2, UL3)

The **outputs** are the basic Fourier components of the analyzed voltages (UL1Four, UL2Four, UL3Four).

The phase-to-phase voltages (if used) are also calculated here.

3.1.1.6. The definite time characteristics (Characteristics)

This module decides the starting of the function based on the Fourier components of the phase voltages and it counts the time delay. The time delay is defined by the parameter setting, if the voltages are below the setting value.

The **inputs** are the basic Fourier components of the phase (or the calculated phase-to-phase) voltages (UL1Four, UL2Four, UL3Four) and parameters.

The **outputs** are the status signals of the three phases individually. These indicate the started state and the generated trip command if the time delay determined by the setting is expired.

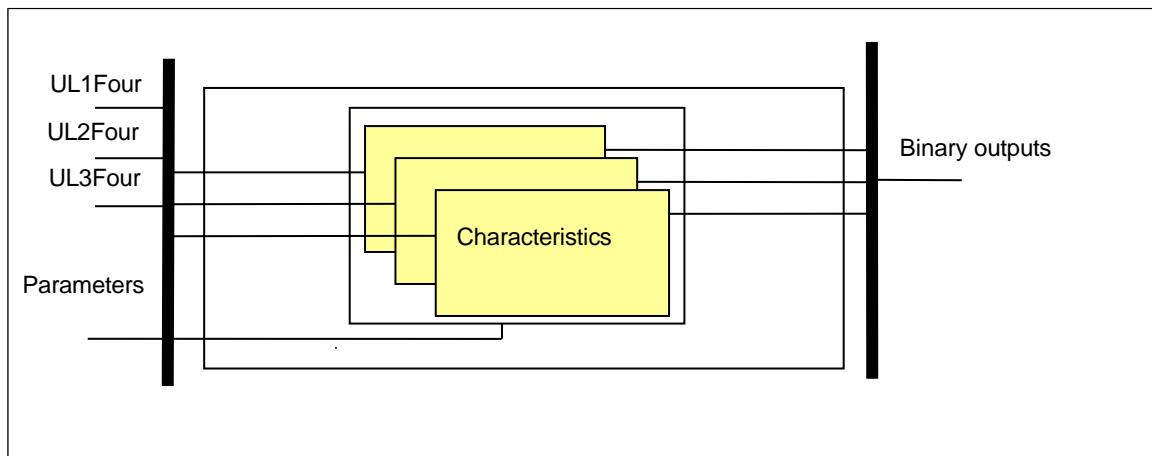


Figure 1-4 Schema of the definite time characteristic calculation

Enumerated parameter

Parameter name	Title	Selection range	Default
Enabling or disabling the undervoltage protection function			
TUV27_Oper_EPar_	Operation	Off, 1 out of 3, 2 out of 3, All	Off

Table 1-1 The enumerated parameter of the undervoltage protection function

Integer parameters

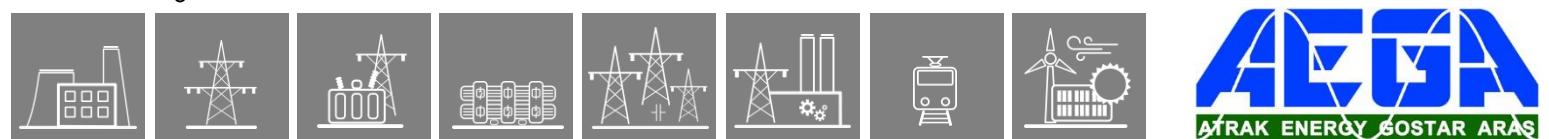

Parameter name	Title	Unit	Min	Max	Step	Default
Starting voltage level setting. If the measured voltage is below the setting value, the function generates a start signal.						
TUV27_StVol_IPar_	Start Voltage	%	30	130	1	90
Blocking voltage level setting. If the measured voltage is below the setting value, the function blocks the start signal.						
TUV27_BlkVol_IPar_	Block Voltage	%	0	20	1	10

Table 1-2 Integer parameters of the undervoltage protection function

Floating point parameter

Parameter name	Title	Unit	Min	Max	Step	Default
Starting voltage level setting. If the measured voltage is below the setting value, the function generates a start signal.						
TUV27_ResetRatio_FPar_	Reset Ratio	%	1	10	1	5

Table 1-3 Floating point parameter of the undervoltage protection function

Boolean parameter

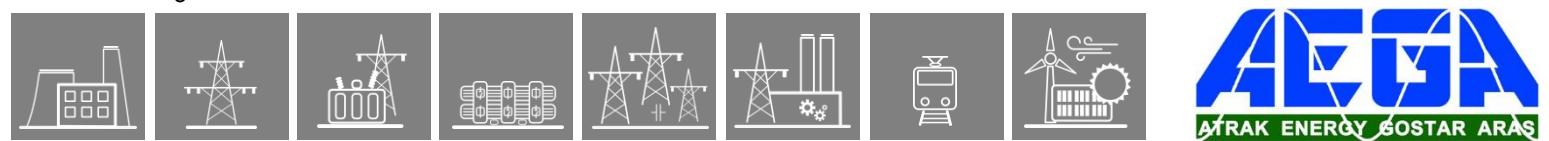
Parameter name	Title	Default	Explanation
TUV27_StOnly_BPar_	Start Signal Only	0	Selection if starting and trip signal or starting signal only is to be generated. Set 0 for trip command generation.

Table 1-4 The Boolean parameter of the undervoltage protection function

Timer parameter

Parameter name	Title	Unit	Min	Max	Step	Default
Time delay of the undervoltage protection function.						
TUV27_Delay_TPar_	Time Delay	ms	50	60000	1	100

Table 1-5 Timer parameter of the undervoltage protection function


The **binary output status signals** of the three-phase definite time undervoltage protection function are listed in *Table 1-6*.

Binary output signals	Signal title	Explanation
TUV27_StL1_Grl_	StL1	Starting of the function in phase L1*
TUV27_Trl1_Grl_	TrL1**	Trip command of the function in phase L1*
TUV27_StL2_Grl_	StL2	Starting of the function in phase L2*
TUV27_Trl2_Grl_	TrL2**	Trip command of the function in phase L2*
TUV27_StL3_Grl_	StL3	Starting of the function in phase L3*
TUV27_Trl3_Grl_	TrL3**	Trip command of the function in phase L3*

*In case of phase-to-phase voltages, these are changed to L12, L23, L31 respectively.

**The trip signals are not published for the phases individually

Table 1-6 The binary output status signals of the definite time undervoltage protection function

3.1.1.7. The decision logic (Decision logic)

The decision logic module combines the status signals, binary and enumerated parameters to generate the trip command of the function.

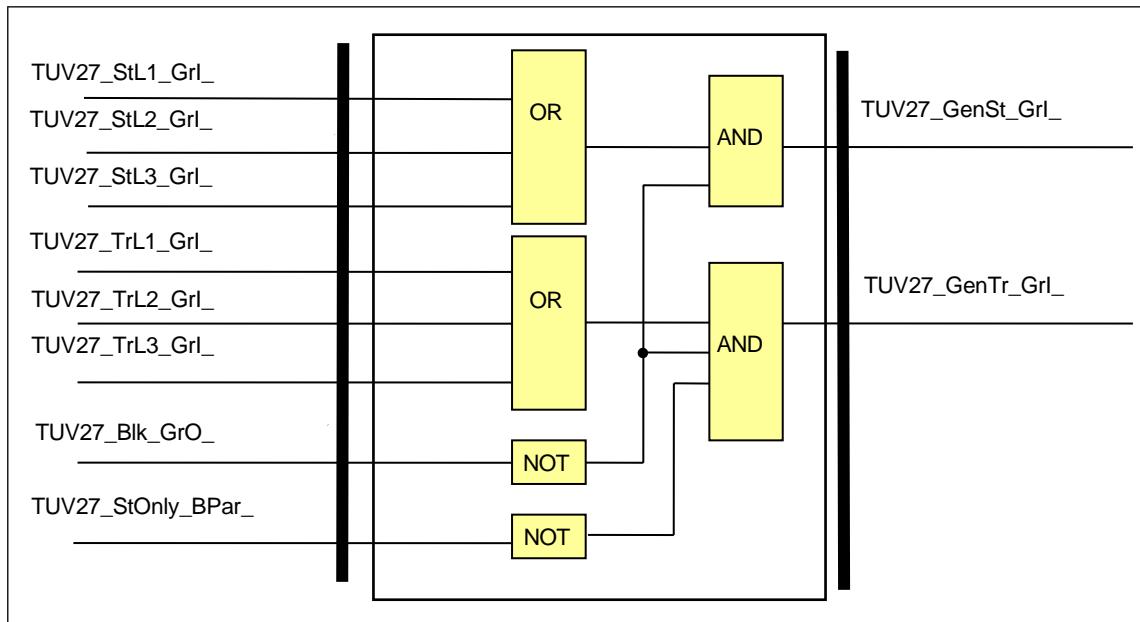


Figure 1-5 The logic scheme of the definite time undervoltage protection function

Binary input signals	Signal title	Explanation
TUV27_StL1_Grl_	StL1	Starting of the function in phase L1*
TUV27_TrL1_Grl_	TrL1**	Trip command of the function in phase L1*
TUV27_StL2_Grl_	StL2	Starting of the function in phase L2*
TUV27_TrL2_Grl_	TrL2**	Trip command of the function in phase L2*
TUV27_StL3_Grl_	StL3	Starting of the function in phase L3*
TUV27_TrL3_Grl_	TrL3**	Trip command of the function in phase L3*

*In case of phase-to-phase voltages, these are changed to L12, L23, L31 respectively.

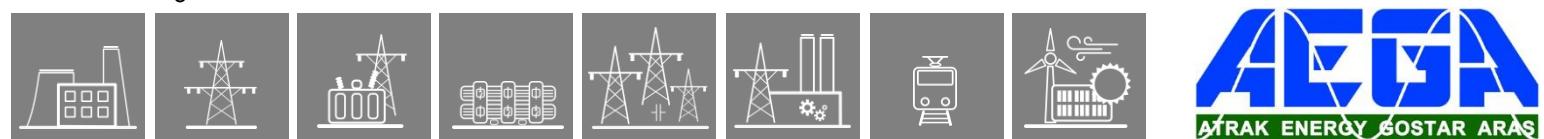

**The trip signals are not published for the phases individually

Table 1-7 The binary input signals of the definite time undervoltage protection function

Boolean parameter

Parameter name	Title	Default
Enabling start signal only:		
TUV27_StOnly_BPar_	Start Signal Only	FALSE

Table 1-8 The Boolean parameter of the definite time undervoltage protection function

Binary status signals

The undervoltage protection function has a binary input signal, which serves the purpose of disabling the function. The conditions of disabling are defined by the user, applying the graphic equation editor.

Binary input status signal	Signal title	Explanation
TUV27_Blk_GrO_	Blk	Output status of a graphic equation defined by the user to disable the definite time undervoltage protection function.

Table 1-9 The binary input status signal of the definite time undervoltage protection function

Binary output status signal	Signal title	Explanation
TUV27_GenSt_Grl_	GenSt	General starting of the function
TUV27_GenTr_Grl_	GenTr	General trip command of the function

Table 1-10 The binary output status signals of the definite time undervoltage protection function

3.1.1.8. Technical summary

3.1.1.8.1. Technical data

Function	Value	Accuracy
Pick-up starting accuracy		< ± 0,5 %
Blocking voltage		< ± 1,5 %
Reset time U> → Un U> → 0	50 ms 40 ms	
Operate time accuracy		< ± 20 ms
Minimum operate time	50 ms	

Table 1-11 Technical data of the undervoltage protection function

3.1.1.8.1.1. The parameters

The parameters are summarized in Chapters 3.1.2.5 and 3.1.2.6

3.1.1.8.2. Binary output status signals

The **binary output status signals** of undervoltage protection function are listed in Table 1-12

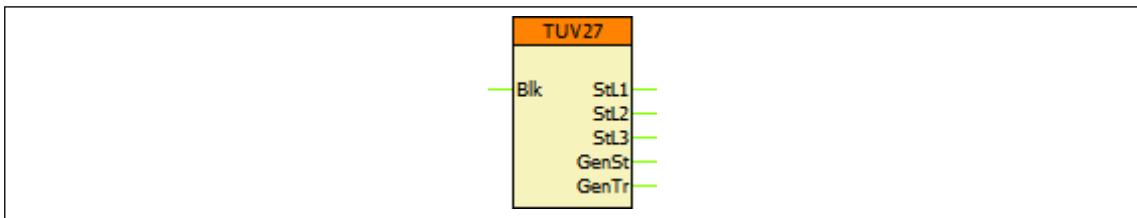
Binary output status signal	Title	Explanation
TUV27_StL1_Grl_	StL1	Start in phase L1*
TUV27_StL2_Grl_	StL2	Start in phase L2*
TUV27_StL3_Grl_	StL3	Start in phase L3*
TUV27_GenSt_Grl_	GenSt	General start signal
TUV27_GenTr_Grl_	GenTr	General trip command

*In case of phase-to-phase voltages, these are changed to L12, L23, L31 respectively.

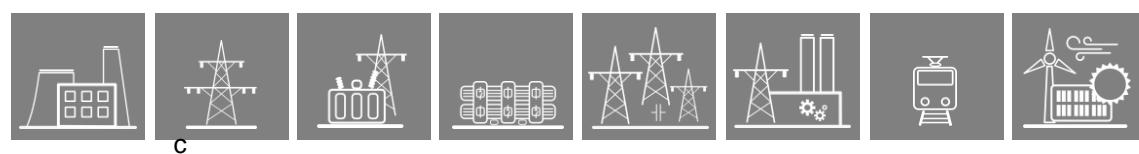
Table 1-12 The binary output status signals of the undervoltage protection function

3.1.1.8.3. Binary input status signals

Binary input signals


The undervoltage protection function has a binary input signal, which serves the purpose of disabling the function. **The conditions of disabling are defined by the user, applying the graphic equation editor.**

Binary status signal	Title	Explanation
TUV27_Blk_GrO_	Blk	Blocking of the undervoltage protection function


Table 1-13 The binary input signal of undervoltage protection function

3.1.1.8.4. The function block

The function block of undervoltage protection function is shown in Figure 1-6. This block shows all binary input and output status signals that are applicable in the graphic equation editor.

Figure 1-6 The function block of undervoltage protection function

3.1.2. Loss-of-load (undercurrent) protection function

The loss-of-load (undercurrent) protection function operates when the current decreases below a predetermined value.

This protection function can be applied for fan or pump drives, where the flowing media provides cooling for the motor itself. If this cooling stops, the motor must not remain in operation. In these cases the protection against low load after a given time delay disconnects the motor from the power supply.

It can also stop a motor in case of a failure in a mechanical transmission (e.g. conveyor belt).

A time delay may be required after start of the function to prevent operation during transients of the power systems.

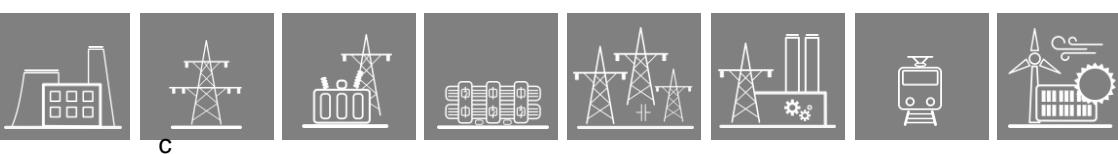
The advantage of this function is its simplicity: no voltage measurement is needed, no power calculations are performed. The operation is based on phase currents only.

3.1.2.1. Operation of the loss-of-load (undercurrent) protection algorithm

The function starts if the current is between the start current as upper limit, defined by the parameter TUC37_StCurr_IPar_ (Start Current) and the minimal current as lower limit, defined by the parameter TUC37_Idle_IPar (Idle Current). These limit values are given in percent of the rated current of the protected object. This is defined by the parameter TUC37_CTRatio_IPar_ (InMotor/InCT). This parameter is also given as a percentage.

The function operates in all three phases individually but the general start signal output is generated if the conditions are satisfied in all three phases.

At starting, a time counter is triggered. The function generates a trip command if the time delay defined by the parameter TUC37_Delay_TPar (Time Delay) expires.


The timers operate in all three phases individually but the general trip command is output if the timers expire in all three phases.

The **inputs** of the loss-of-load protection function are

- the Fourier basic components of three phase currents,
- binary input,
- parameters.

The **outputs** of the loss-of-load protection function are

- the general start status signal,
- the general trip command.

3.1.2.2. Technical summary

3.1.2.2.1. Technical data

Function	Range	Accuracy
Current accuracy	20 – 2000% of In	±1% of In
Reset ratio at idle current	0.95 0.70	
Operating time accuracy		±5% or ± 15 ms whichever is greater
Minimum operating time	<60 ms	
Reset time	<60 ms	

Table 1-1 Technical data of the loss-of-load protection

3.1.2.2.2. Summary of the parameters

The parameters of the loss-of-load protection function are explained in the following tables.

Enumerated parameter

Parameter name	Title	Selection range	Default
Disabling or enabling the operation of the function			
TUC37_Oper_EPar_	Operation	Off,On	On

Table 1-2 The enumerated parameter of the loss-of-load protection function

Boolean parameter

Parameter name	Title	Default	Explanation
Disabling trip command			
TUC37_StOnly_BPar_	Start Signal Only	0	If this parameter is set to logic True, then no trip command is generated, only a start signal.

Table 1-3 The Boolean parameter of the loss-of-load protection function

Integer parameters

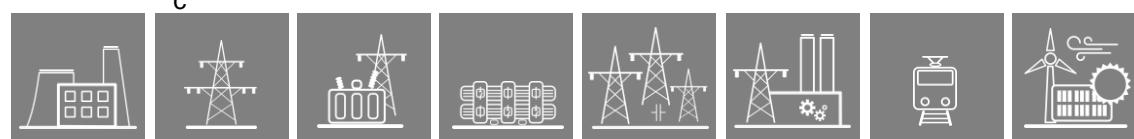

Parameter name	Title	Unit	Min	Max	Step	Default
Ratio of the rated current of the protected object and that of the current input of the device						
TUC37_CTRatio_IPar_	InMotor/InCT	%	20	150	1	100
Start current related to the rated current of the protected object, below which the function operates						
TUC37_StCurr_IPar_	Start Current	%	20	100	1	40
Minimal current related to the rated current of the protected object, above which the function operates						
TUC37_Idle_IPar_	Idle Current	%	1	20	1	10

Table 1-4 The integer parameters of the loss-of-load protection function

Timer parameter

Parameter name	Title	Unit	Min	Max	Step	Default
Time delay for the trip command:						
TUC37_Delay_TPar_	Time Delay	msec		60000	1	100

Table 1-5 The timer parameter of the loss-of-load protection function

3.1.2.2.3. Binary output status signals

The **binary output status signals** of the loss-of-load protection function.

Binary output signals	Signal title	Explanation
Start signal of the function block		
TUC37_GenSt_Grl_	General Start	Start signal of the function block
Trip command of the function block		
TUC37_GenTr_Grl_	General Trip	Trip command of the function block

Table 1-6 The binary output status signals of the loss-of-load protection function

3.1.2.2.4. Binary input status signals

The **binary inputs** are signals influencing the operation of the loss-of-load protection function. These signals are the results of logic equations graphically edited by the user.

Binary input signal	Signal title	Explanation
Disabling the function		
TUC37_Blk_GrO_	Block	The programmed True state of this input disables the operation of the function

Table 1-7 The binary input signal of the loss-of-load protection function

3.1.2.2.5. The function block

The function block of the loss-of-load protection function is shown in Figure 1-1. This block shows all binary input and output status signals that are applicable in the graphic equation editor.

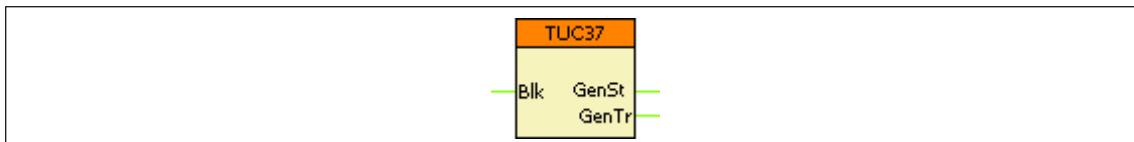


Figure 1-1 The function block of the loss-of-load protection function

3.1.3. Three-phase time overcurrent protection

3.1.3.1. Operation principle

The overcurrent protection function realizes definite time or inverse time characteristics according to IEC or IEEE standards, based on three phase currents. The characteristics are harmonized with IEC 60255-151, Edition 1.0, 2009-08. This function can be applied as main protection for medium-voltage applications or backup or overload protection for high-voltage network elements.

3.1.3.1.1. Operating characteristics

3.1.3.1.1.1. Independent time characteristic

$$t(G) = t_{OP} \text{ when } G > G_s$$

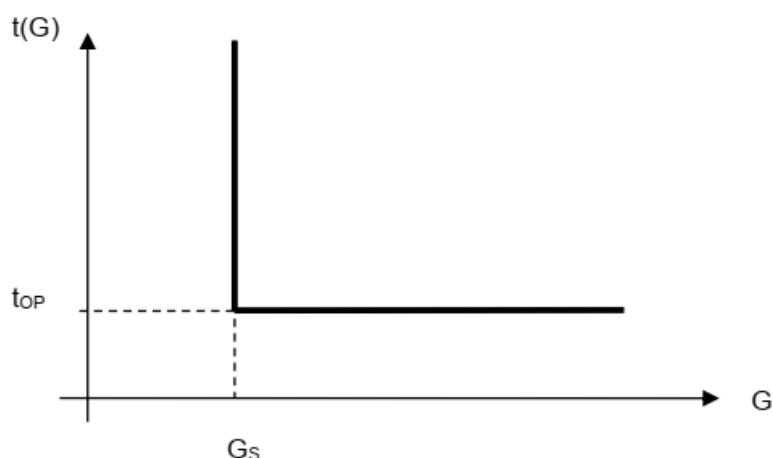
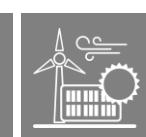



Figure 1-1 Overcurrent independent time characteristic

where

- t_{OP} (seconds) theoretical operating time if $G > G_s$, fix, according to the preset parameter,
- G measured value of the characteristic quantity, Fourier base harmonic of the phase currents,
- G_s preset value of the characteristic quantity ("Start current" parameter).

3.1.3.1.1.2. Standard dependent time characteristics

Operating characteristics:

$$t(G) = TMS \left[\frac{k}{\left(\frac{G}{G_s} \right)^\alpha - 1} + c \right] \text{ when } G > G_s$$

where

$t(G)$ (seconds) theoretical operate time with constant value of G ,
 k, c constants characterizing the selected curve (in seconds),
 α constants characterizing the selected curve (no dimension),
 G measured value of the characteristic quantity, Fourier base harmonic of the phase currents (IL1Four, IL2Four, IL3Four),
 G_s preset value of the characteristic quantity ("Start current" parameter),
 TMS preset time multiplier (no dimension).

Table 1-1 The constants of the standard dependent time characteristics

IEC REF	TITLE	kr	c	α
1	A IEC Inv	0,14	0	0,02
2	B IEC VeryInv	13,5	0	1
3	C IEC ExtInv	80	0	2
4	IEC LongInv	120	0	1
5	ANSI Inv	0,0086	0,0185	0,02
6	ANSI ModInv	0,0515	0,1140	0,02
7	E ANSI VeryInv	19,61	0,491	2
8	F ANSI ExtInv	28,2	0,1217	2
9	ANSI LongInv	0,086	0,185	0,02
10	ANSI LongVeryInv	28,55	0,712	2
11	ANSI LongExtInv	64,07	0,250	2

The end of the effective range of the dependent time characteristics (G_D) is:

$$G_D = 20 * G_s$$

Above this value the theoretical operating time is definite:

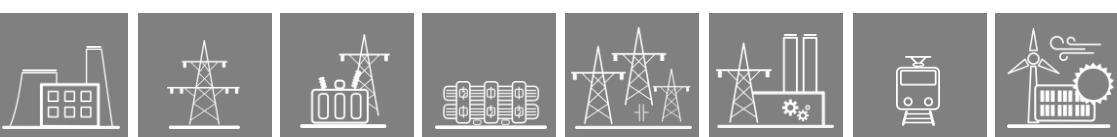
$$t(G) = TMS \left[\frac{k}{\left(\frac{G_D}{G_s} \right)^\alpha - 1} + c \right] \text{ when } G > G_D = 20 * G_s$$

Additionally, a minimum time delay can be defined by parameter "Min Time Delay". This delay is valid if it is longer than $t_r(G)$, defined by the formula above.

The inverse characteristic is valid above $G_T = 1,1 * G_s$. Above this value the function is guaranteed to operate.

Resetting characteristics:

- For IEC type characteristics the resetting is after a fix time delay defined by "Reset delay",
- for ANSI types however according to the formula below:


$$t_r(G) = TMS \left[\frac{k_r}{1 - \left(\frac{G}{G_s} \right)^\alpha} \right] \text{ when } G < G_s$$

where

$t_r(G)$ (seconds)	theoretical reset time with constant value of G ,
k_r	constants characterizing the selected curve (in seconds),
α	constants characterizing the selected curve (no dimension),
G	measured value of the characteristic quantity, Fourier base harmonic of the phase currents,
G_s	preset value of the characteristic quantity ("Start current" parameter),
TMS	preset time multiplier (no dimension).

Table 1-2 The resetting constants of the standard dependent time characteristics

	IEC REF	TITLE	kr	α
1	A	IEC Inv	Resetting after fix time delay, according to preset parameter "Reset delay"	
2	B	IEC VeryInv		
3	C	IEC ExtInv		
4		IEC LongInv		
5		ANSI Inv	0,46	2
6	D	ANSI ModInv	4,85	2
7	E	ANSI VeryInv	21,6	2
8	F	ANSI ExtInv	29,1	2
9		ANSI LongInv	4,6	2
10		ANSI LongVeryInv	13,46	2
11		ANSI LongExtInv	30	2

3.1.3.1.2. Structure of the overcurrent protection algorithm

Fig.1-2 shows the structure of the overcurrent protection (TOC51) algorithm.

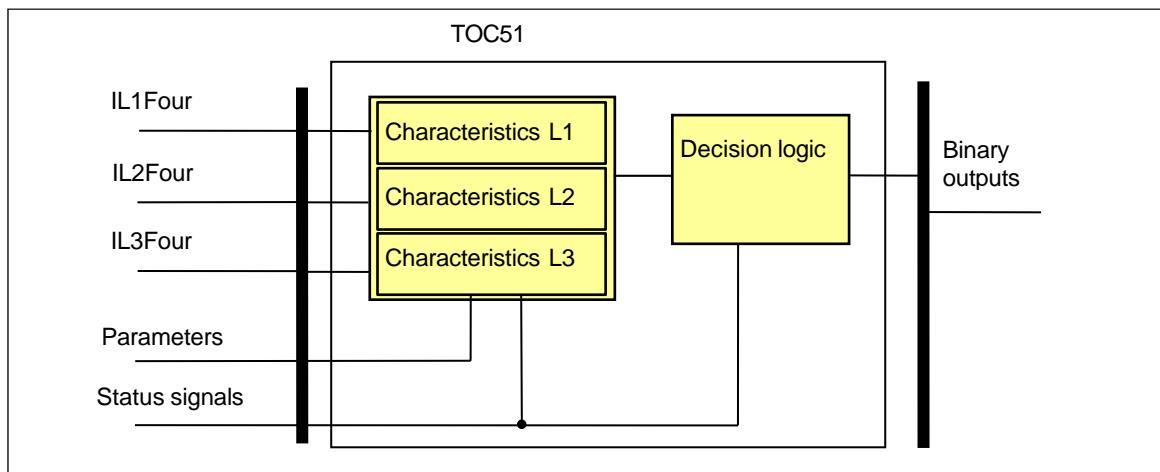


Figure 1-2 Structure of the overcurrent protection algorithm

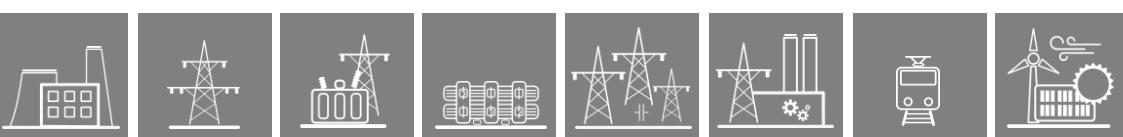
The **inputs** are

the RMS value of the fundamental Fourier component of three phase currents, parameters, status signals.

The **outputs** are

the binary output status signals.

The **software modules** of the overcurrent protection function:


Characteristics

This module calculates the required time delay based on the Fourier components of the phase currents.

Decision logic

The decision logic module combines the status signals to generate the trip command of the function.

The following description explains the details of the individual components.

3.1.3.1.3. The definite time and the inverse type characteristics (characteristics)

This module calculates the required time delay based on the Fourier components of the phase currents. The formulas applied are described in Chapter 1.1.

The **inputs** are the RMS value of the fundamental Fourier component of the phase currents (IL1Four, IL2Four, IL3Four) and parameters.

The **outputs** are the status signals of the three phases individually. These indicate the started state and the generated trip command if the time delay determined by the characteristics expired.

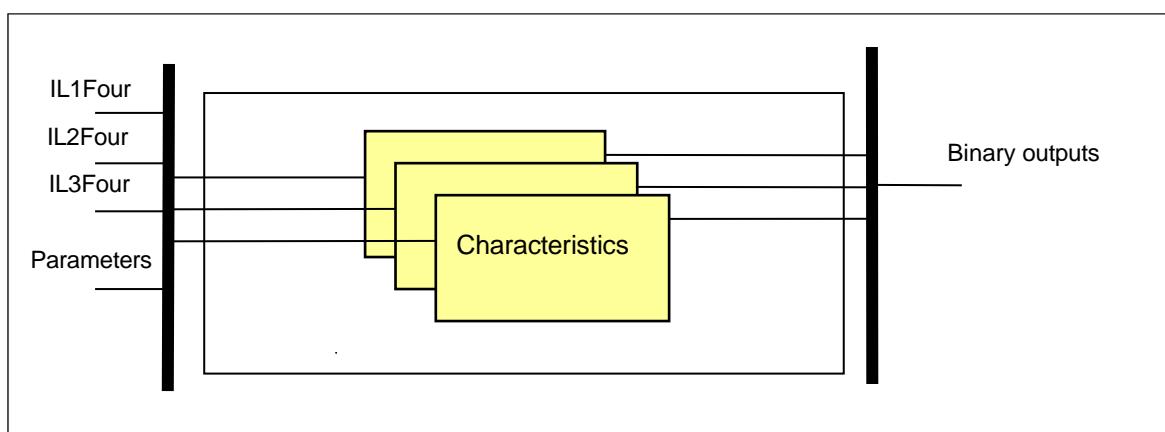
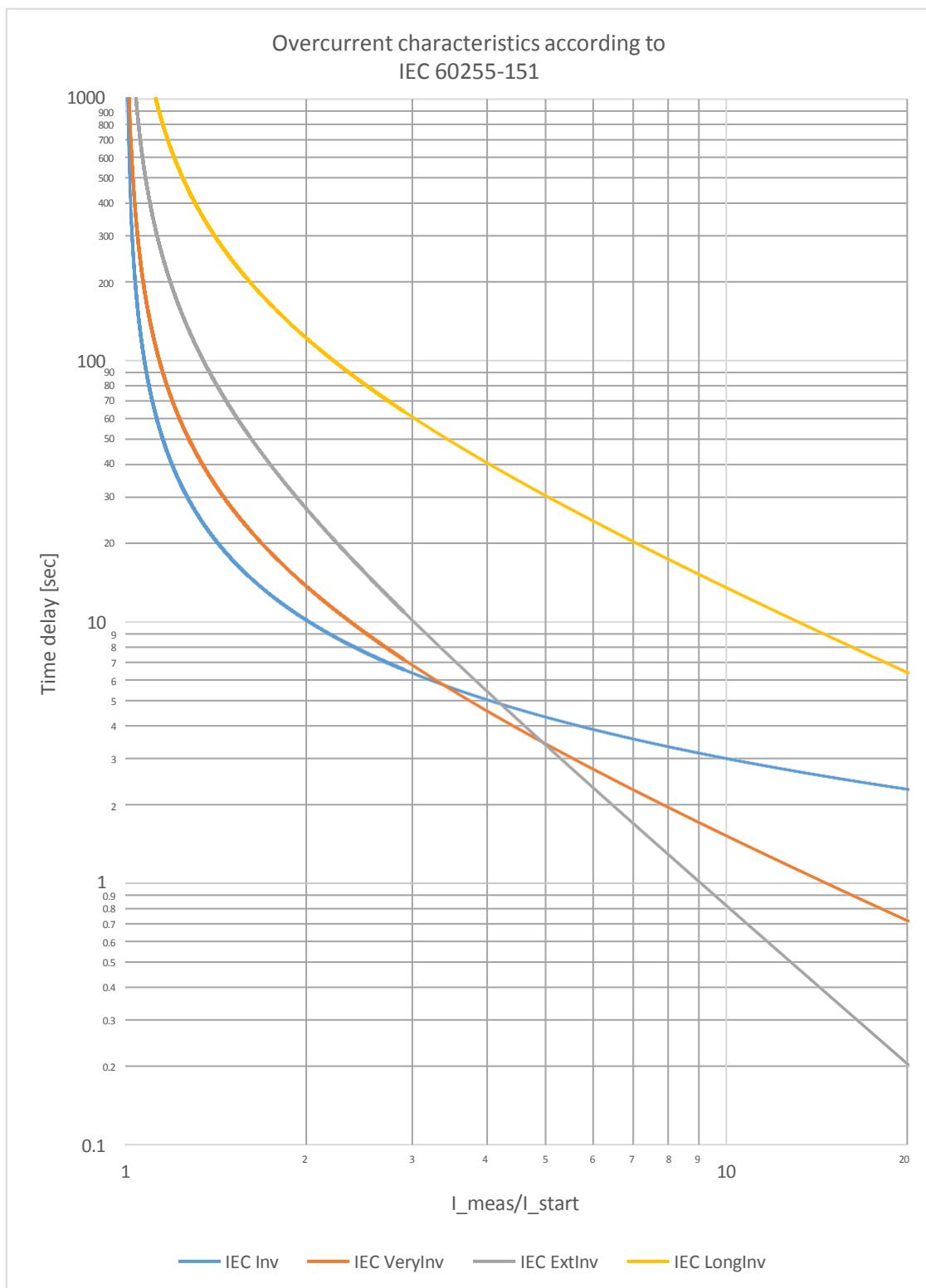
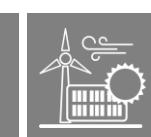


Figure 1-3 Schema of the characteristic calculation

The inverse type characteristics are also presented graphically on the following pages. These diagrams assume 100% setting value for the Start current parameter (GS), 1 for the Time multiplier (TMS) and 0 for the Min. time delay.

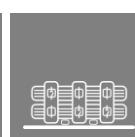


Figure 1-4 Overcurrent characteristics according to IEC 60255-151

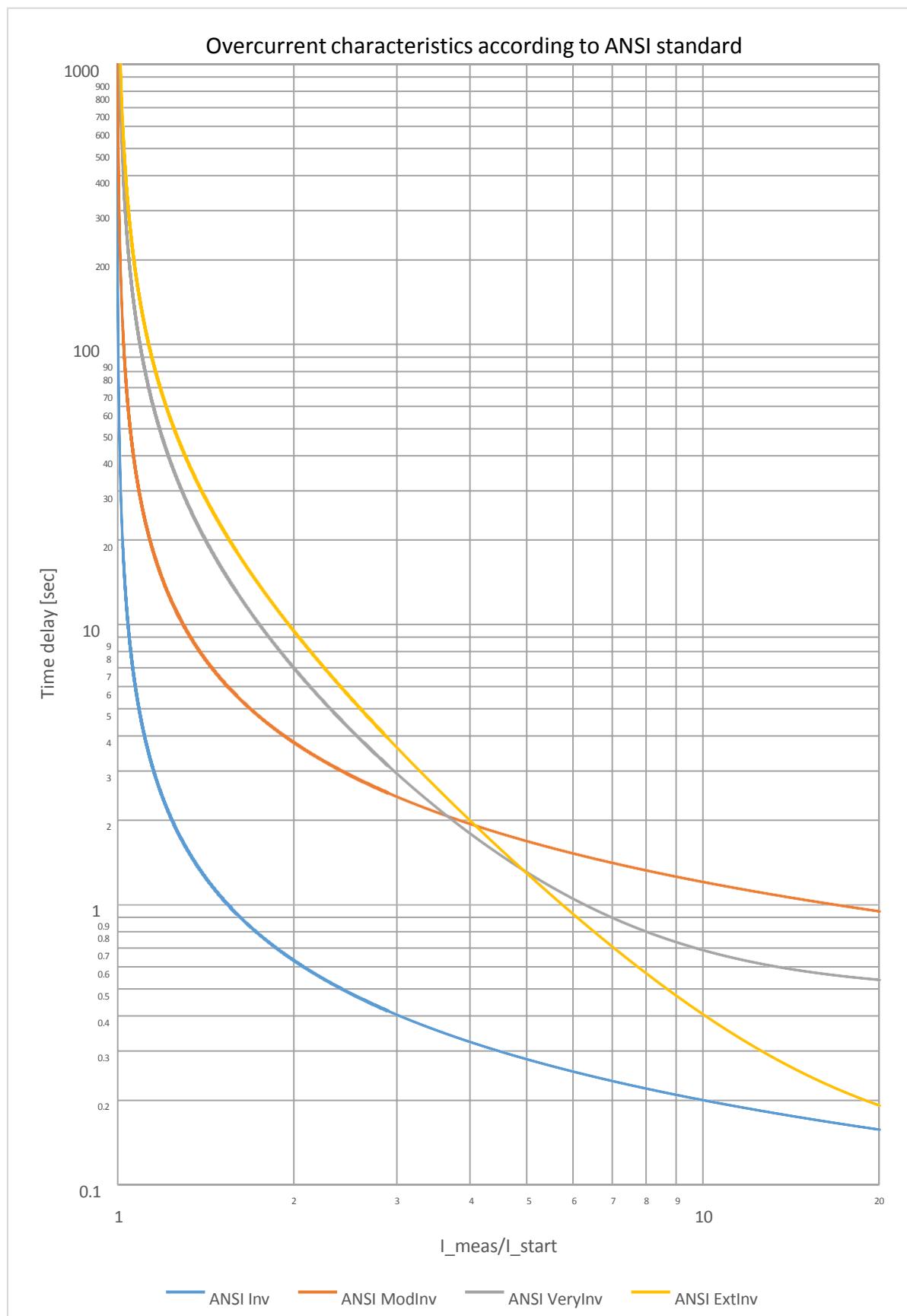
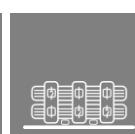
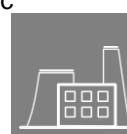




Figure 1-5 Overcurrent characteristics according to ANSI standard

Overcurrent characteristics according to ANSI standard

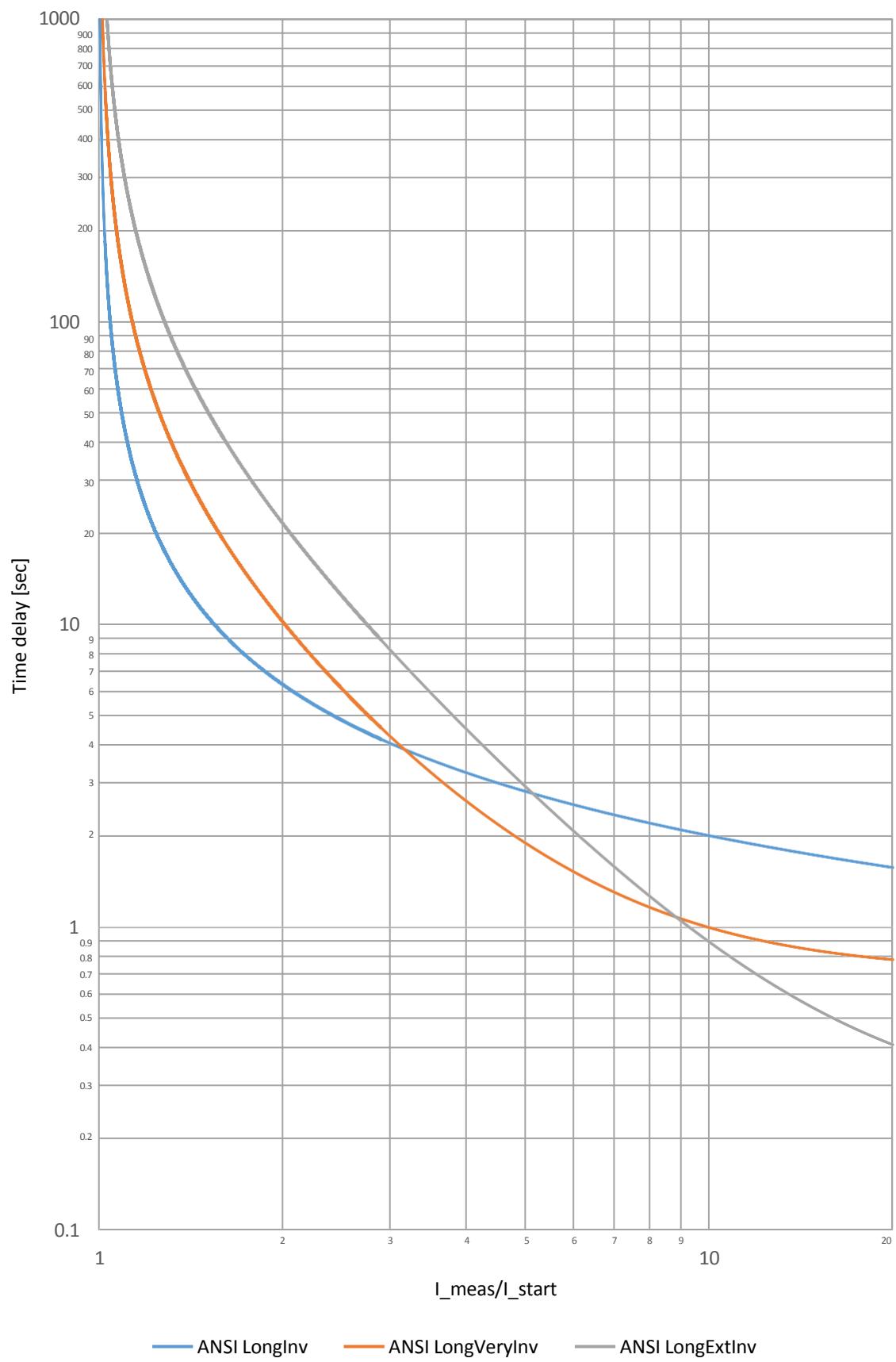


Figure 1-6 Overcurrent characteristics according to ANSI standard

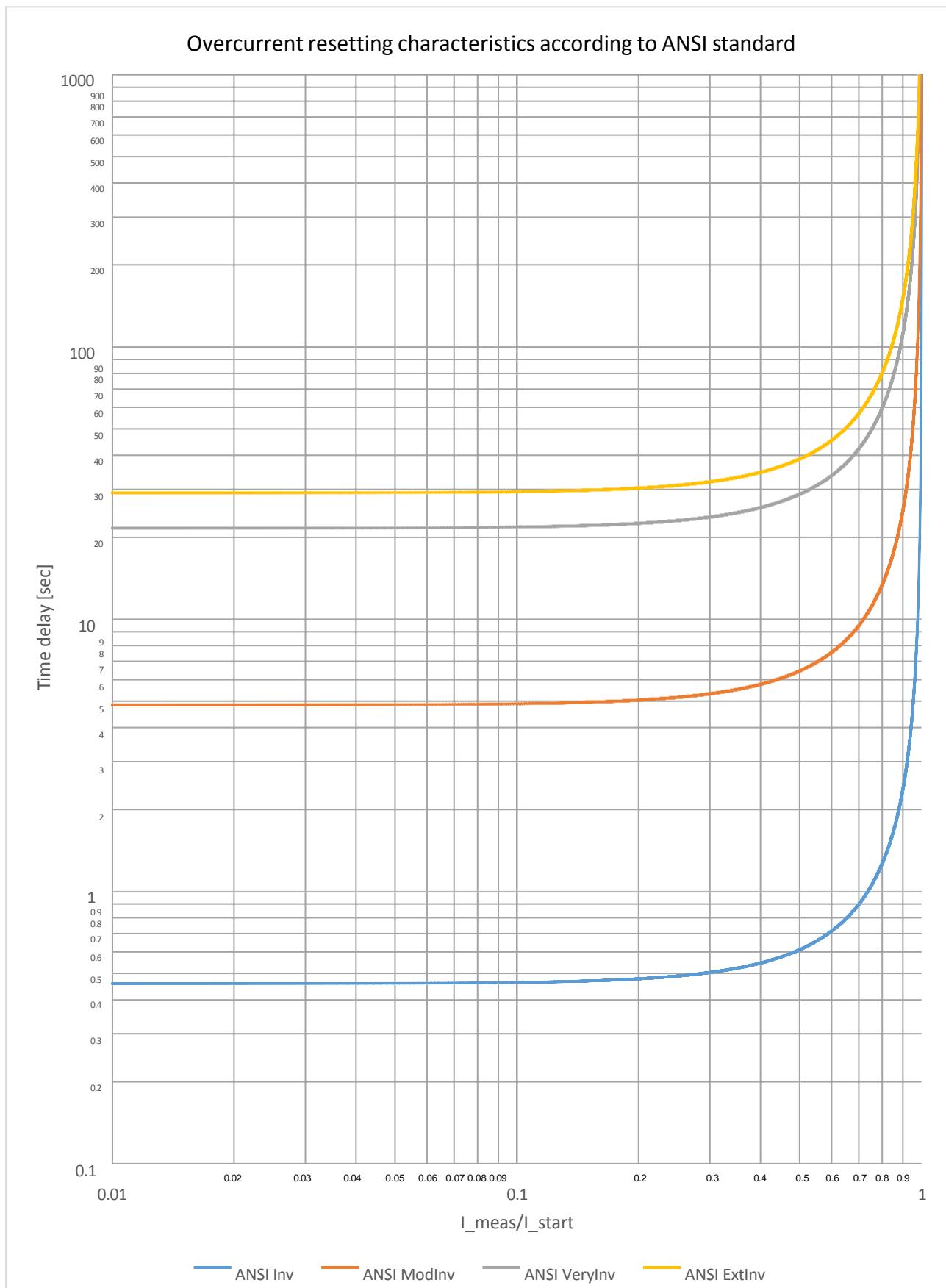
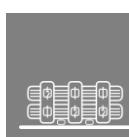
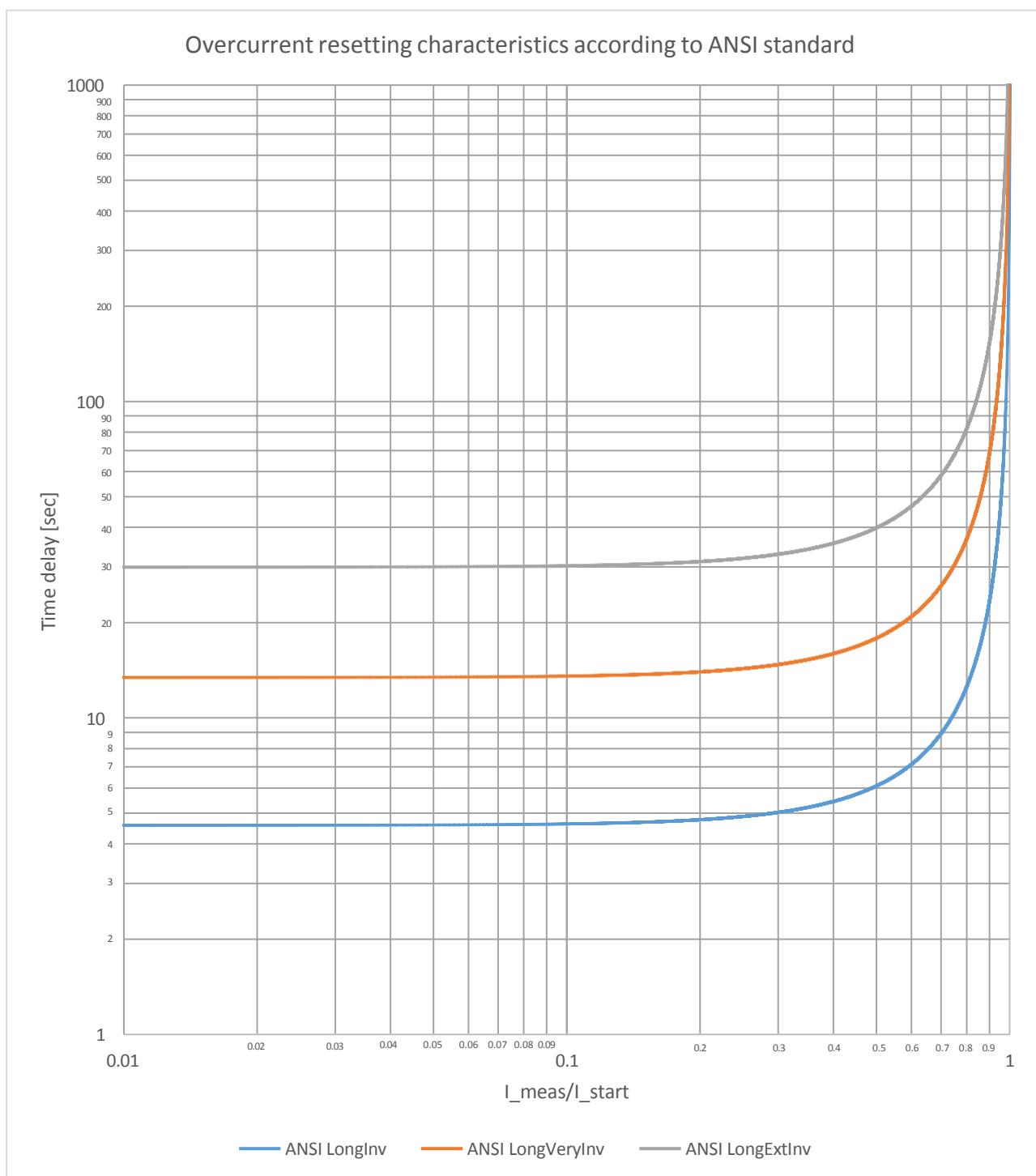



Figure 1-7 Overcurrent resetting characteristics according to ANSI standard



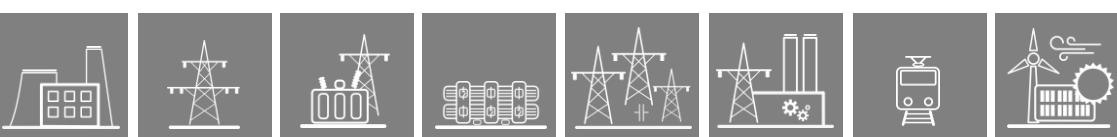


Figure 1-8 Overcurrent resetting characteristics according to ANSI standard

3.1.3.1.4. The decision logic (Decision logic)

The decision logic module combines the status signals to generate the general start signal and general trip command of the function.

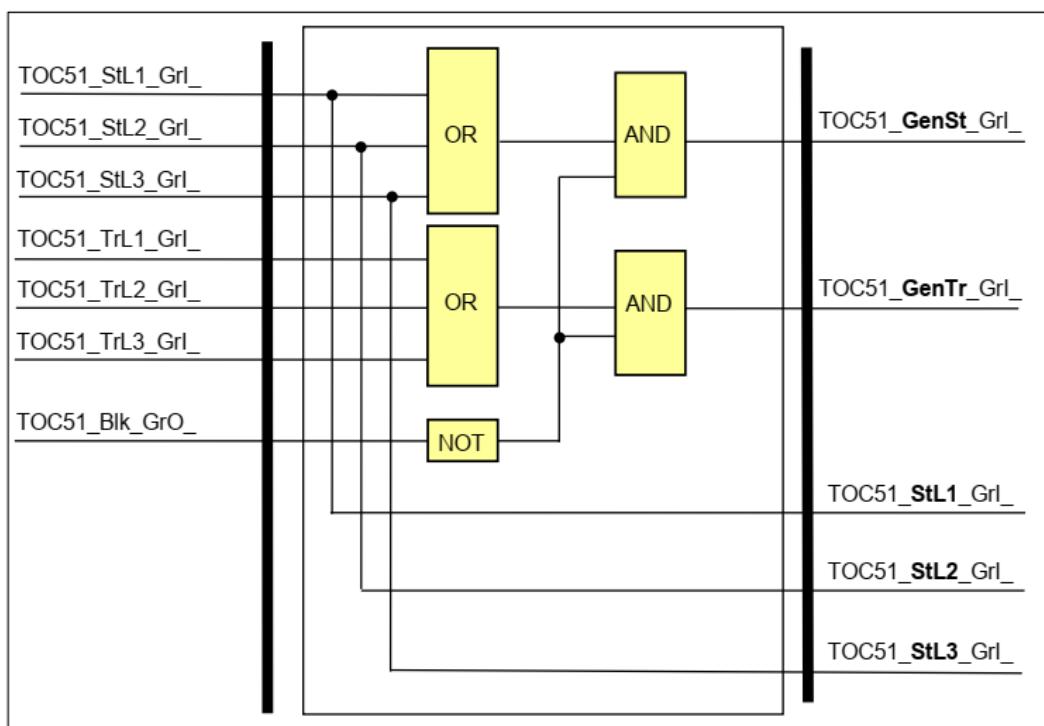


Figure 1-9 The logic scheme of the overcurrent protection function

Table 1-3 The binary input status signals of the overcurrent protection function

BINARY INPUT SIGNALS	SIGNAL TITLE	EXPLANATION
TOC51_StL1_Grl_	Start L1	Starting of the function in phase L1
TOC51_Trl1_Grl_	Trip L1	Trip command of the function in phase L1
TOC51_StL2_Grl_	Start L2	Starting of the function in phase L2
TOC51_Trl2_Grl_	Trip L2	Trip command of the function in phase L2
TOC51_StL3_Grl_	Start L3	Starting of the function in phase L3
TOC51_Trl3_Grl_	Trip L3	Trip command of the function in phase L3

Binary status signals

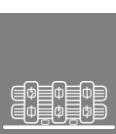

The overcurrent protection function has a binary input signal, which serves the purpose of disabling the function. **The conditions of disabling are defined by the user, applying the graphic equation editor.**

Table 1-4 The binary input signal of the overcurrent protection function

BINARY STATUS SIGNAL	EXPLANATION
TOC51_Blk_GrO_	Output status of a graphic equation defined by the user to disable the overcurrent protection function.

Table 1-5 The binary output status signals of the overcurrent protection function

BINARY OUTPUT SIGNALS	SIGNAL TITLE	EXPLANATION
TOC51_StL1_Grl_	Start L1	Starting of the function in phase L1
TOC51_StL2_Grl_	Start L2	Starting of the function in phase L2
TOC51_StL3_Grl_	Start L3	Starting of the function in phase L3
TOC51_GenSt_Grl_	Gen. Start	General starting of the function
TOC51_GenTr_Grl_	Gen. Trip	General trip command of the function

3.1.3.2. 3ph overcurrent protection function overview

The function block of the three-phase overcurrent protection function is shown in Figure 2-1. This block shows all binary input and output status signals that are applicable in the graphic equation editor.

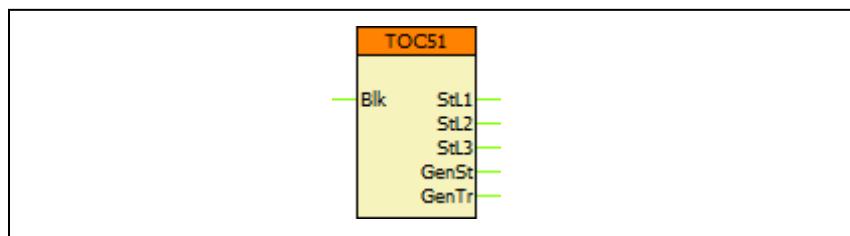



Figure 2-1 The function block of the overcurrent protection function

3.1.3.2.1. Settings

3.1.3.2.1.1. Parameters

Table 2-1 Parameters of the 3ph overcurrent protection function

TITLE	DIM	RANGE	STEP	DEFAULT	EXPLANATION
Operation	-	Off, Definite Time, IEC Inv, IEC VeryInv, IEC ExtInv, IEC LongInv, ANSI Inv, ANSI ModInv, ANSI VeryInv, ANSI ExtInv, ANSI LongInv, ANSI LongVeryInv, ANSI LongExtInv	-	Off	Enabling the function by choosing the characteristics.
Start Current	%	10 – 3000	1	200	Starting current of the function.
Time Multiplier	-	0.05 – 15.0	0.01	200	Time multiplier of the inverse characteristics (OC module)
Min Time Delay	msec	40 – 60000	1	100	Minimal time delay for the inverse characteristics
Definite Time Delay	msec	40 – 60000	1	100	Time delay setting for the definite time characteristics
Reset Time	msec	60 – 60000	1	100	Reset time for the IEC inverse characteristics

3.1.3.2.2. Function I/O

This section describes briefly the analogue and digital inputs and outputs of the function block.

3.1.3.2.2.1. Analogue inputs

The function uses the sampled values of the three phase currents.

3.1.3.2.2.2. Binary output signals (graphed input statuses)

The **binary output status signals** of the three-phase overcurrent protection function are listed in Table 2-2. Parts written in **bold** are seen on the function block in the logic editor.

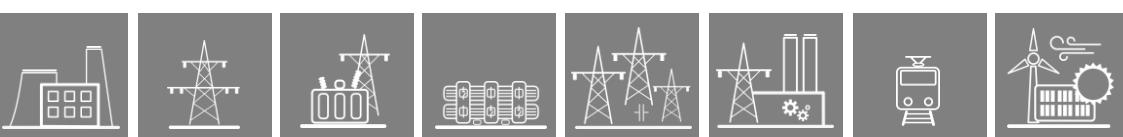
Table 2-2 The binary output status signals of the 3ph overcurrent protection function

BINARY OUTPUT SIGNALS	SIGNAL TITLE	EXPLANATION
TOC51_StL1_Grl	Start L1	Starting of the function in phase L1
TOC51_Trl1_Grl	Trip L1	Trip command of the function in phase L1
TOC51_StL2_Grl	Start L2	Starting of the function in phase L2
TOC51_Trl2_Grl	Trip L2	Trip command of the function in phase L2
TOC51_StL3_Grl	Start L3	Starting of the function in phase L3
TOC51_Trl3_Grl	Trip L3	Trip command of the function in phase L3
TOC51_GenSt_Grl	General Start	General start of the function
TOC51_GenTr_Grl	General Trip	General trip command of the function

3.1.3.2.2.3. Binary input signals (graphed output statuses)

The overcurrent protection function has a binary input signal, which serves the purpose of disabling the function. **The conditions of disabling are defined by the user, applying the graphic equation editor.**

Table 2-3 The binary input status signals of the 3ph overcurrent protection function

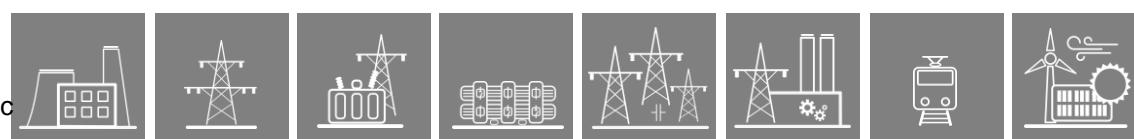

BINARY INPUT SIGNAL	EXPLANATION
TOC51_Blk_GrO	Output status of a graphic equation defined by the user to disable the overcurrent protection function.

3.1.3.2.2.4. On-line data

Visible values on the on-line data page:

Table 2-4 On-line data of the 3ph overcurrent protection function

SIGNAL TITLE	DIMENSION	EXPLANATION
Start L1	-	Starting of the function in phase L1
Trip L1	-	Trip command of the function in phase L1
Start L2	-	Starting of the function in phase L2
Trip L2	-	Trip command of the function in phase L2
Start L3	-	Starting of the function in phase L3
Trip L3	-	Trip command of the function in phase L3
General Start	-	General start of the function
General Trip	-	General trip command of the function



3.1.3.2.2.5. Events

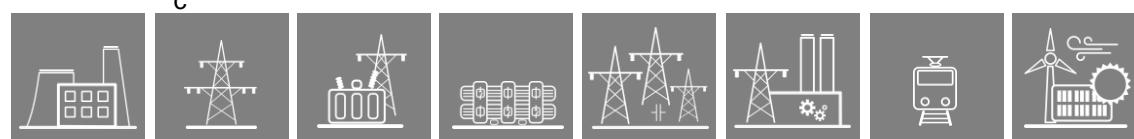
The following events are generated in the event list, as well as sent to SCADA according to the configuration.

Table 2-5 Events of the 3ph overcurrent protection function

EVENT	VALUE	EXPLANATION
Start L1	off, on	Start of the three-phase overcurrent protection function in measuring element L1
Start L2	off, on	Start of the three-phase overcurrent protection function in measuring element L2
Start L3	off, on	Start of the three-phase overcurrent protection function in measuring element L3
General Start	off, on	General start of the three-phase overcurrent protection function
General Trip	off, on	General trip command of the three-phase overcurrent protection function

3.1.3.2.3. Technical data

Table 2-6 Technical data of the 3ph overcurrent protection function


FUNCTION	VALUE	ACCURACY
Operating accuracy	$20 \leq GS \leq 1000$	< 2 %
Operate time accuracy		$\pm 5\%$ or ± 15 ms, whichever is greater
Reset ratio	0,95	
Reset time *	Dependent time char. Definite time char. Approx. 60 ms	< 5% or ± 35 ms, whichever is greater
Transient overreach		< 2 %
Pickup time *	< 40 ms	
Overshot time	Dependent time char. Definite time char. 30 ms 50 ms	
Influence of time varying value of the input current (IEC 60255-151)		< 4 %

* Measured with signal relay contact

3.1.3.2.3.1. Notes for testing

Normally in the EuroProt+ devices the trip contacts are assigned to the Trip Logic function block, and not to the protection function blocks. Because of this, the testing personnel must make sure that the Trip Logic is switched on ('Operation' parameter is set to other than 'Off') before starting the testing, otherwise there will be no physical trip on the relay.

The reset time of the IDMT characteristics can be tested only indirectly by injecting the same fault currents again after a successful trip: if the time elapsed between the two injections is less than the reset time, the second injection will result in a quicker operation than the first.

3.1.4. Residual overcurrent protection function

The residual overcurrent protection function can realize definite time or inverse time characteristics according to IEC or IEEE standards, based on the RMS value of the fundamental Fourier component of a single measured current, which can be the measured residual current at the neutral point ($3I_{lo}$) or the calculated zero sequence current component. The characteristics are harmonized with IEC 60255-151, Edition 1.0, 2009-08.

3.1.4.1. Operating characteristics

3.1.4.1.1. Independent time characteristic

$$t(G) = t_{OP} \text{ when } G > G_s$$

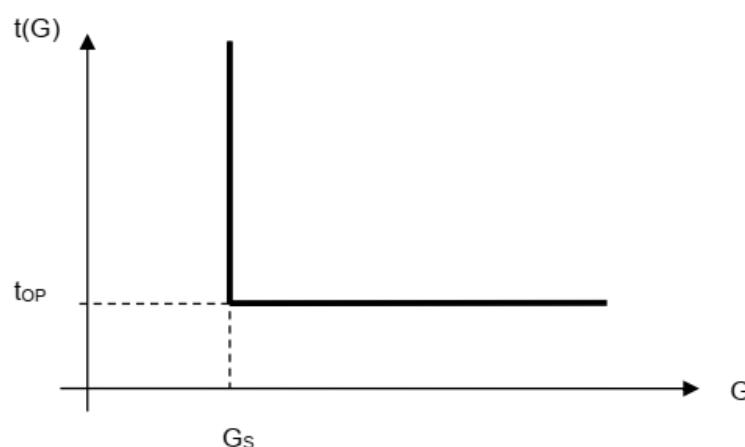
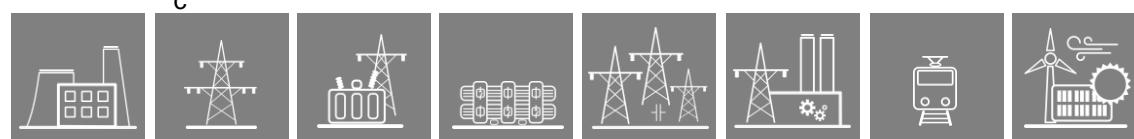



Figure 1-1 Overcurrent independent time characteristic

where	
t_{OP} (seconds)	theoretical operating time if $G > G_s$, fix, according to the preset parameter,
G	measured value of the characteristic quantity, Fourier base harmonic of the residual current,
G_s	preset value of the characteristic quantity (TOC51N_StCurr_IPar_Start current).

3.1.4.1.2. Standard dependent time characteristics

Operating characteristics:

$$t(G) = TMS \left[\frac{k_r}{\left(\frac{G}{G_s} \right)^\alpha - 1} + c \right] \text{ when } G > G_s$$

where

$t(G)$ (seconds)

k_r, c

α

G

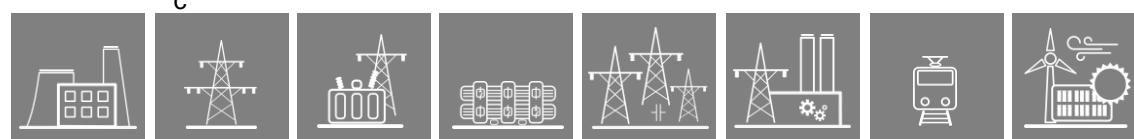
G_s

TMS

theoretical operate time with constant value of G ,

constants characterizing the selected curve (in seconds),

constant characterizing the selected curve (no dimension),


measured value of the characteristic quantity, Fourier base harmonic of the residual current (INFOur),

preset value of the characteristic quantity (TOC51N_StCurr_IPar_, Start current),

preset time multiplier (no dimension).

	IEC ref		k_r	c	α
1	A	IEC Inv	0,14	0	0,02
2	B	IEC VeryInv	13,5	0	1
3	C	IEC ExtInv	80	0	2
4		IEC LongInv	120	0	1
5		ANSI Inv	0,0086	0,0185	0,02
6	D	ANSI ModInv	0,0515	0,1140	0,02
7	E	ANSI VeryInv	19,61	0,491	2
8	F	ANSI ExtInv	28,2	0,1217	2
9		ANSI LongInv	0,086	0,185	0,02
10		ANSI LongVeryInv	28,55	0,712	2
11		ANSI LongExtInv	64,07	0,250	2

Table 1-1 The constants of the standard dependent time characteristics

Resetting characteristics:

$$t_r(G) = TMS \left[\frac{k_r}{1 - \left(\frac{G}{G_s} \right)^\alpha} \right] \text{ when } G < G_s$$

where

$t_r(G)$ (seconds)

theoretical reset time with constant value of G ,

k_r

constants characterizing the selected curve (in seconds),

α

constant characterizing the selected curve (no dimension),

G

measured value of the characteristic quantity, Fourier base harmonic of the residual current,

G_s

preset value of the characteristic quantity (TOC51N_StCurr_IPar_, Start current),

TMS

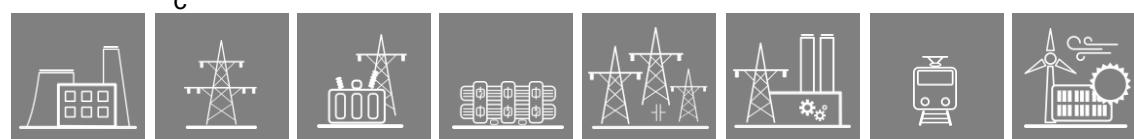
preset time multiplier (no dimension).

	IEC ref		k_r	α
1	A	IEC Inv	Resetting after fix time delay, according to preset parameter TOC51N_Reset_TPar_ "Reset delay"	
2	B	IEC VeryInv		
3	C	IEC ExtInv		
4		IEC LongInv		
5		ANSI Inv	0,46	2
6	D	ANSI ModInv	4,85	2
7	E	ANSI VeryInv	21,6	2
8	F	ANSI ExtInv	29,1	2
9		ANSI LongInv	4,6	2
10		ANSI LongVeryInv	13,46	2
11		ANSI LongExtInv	30	2

Table 1-2 The resetting constants of the standard dependent time characteristics

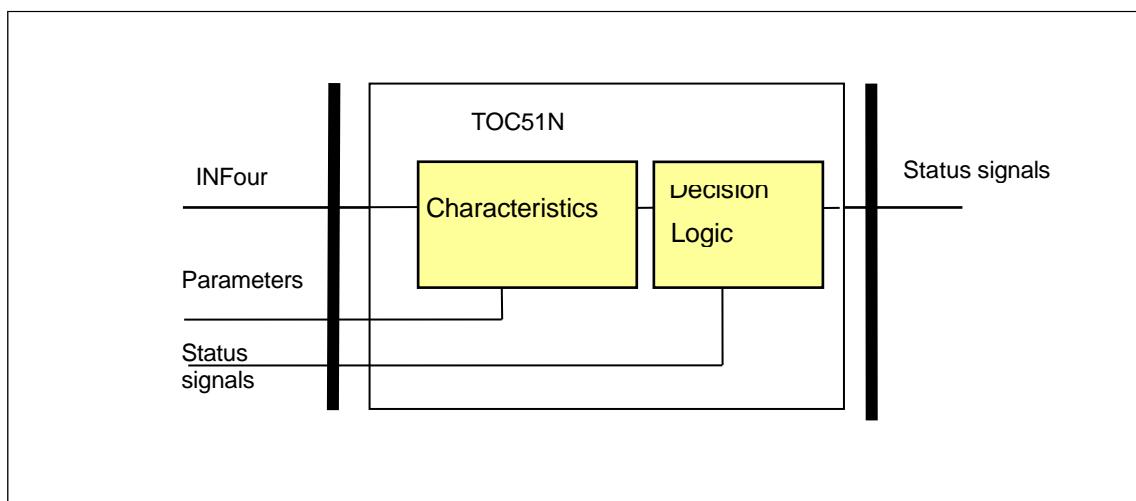
The inverse type characteristics are also combined with a minimum time delay, the value of which is set by user parameter TOC51N_MinDel_TPar_ (Min. Time Delay).

The end of the effective range of the dependent time characteristics (G_D) is:


$$G_D = 20 * G_s$$

Above this value the theoretical operating time is definite:

$$t(G) = TMS \left[\frac{k_r}{\left(\frac{G_D}{G_s} \right)^\alpha - 1} + c \right] \text{ when } G > G_D = 20 * G_s$$


The combined logic requires expiry both the time defined by the inverse characteristic with the definite section AND the expiry of the minimum time defined by the "Min. Time Delay" parameter.

The inverse characteristic is valid above $G_T = 1,1 * G_s$. Above this value the function is guaranteed to operate.

3.1.4.2. Structure of the residual overcurrent protection algorithm

Fig.1-2 shows the structure of the residual overcurrent protection (TOC51N) algorithm.

Figure 1-2 Structure of the residual overcurrent protection algorithm

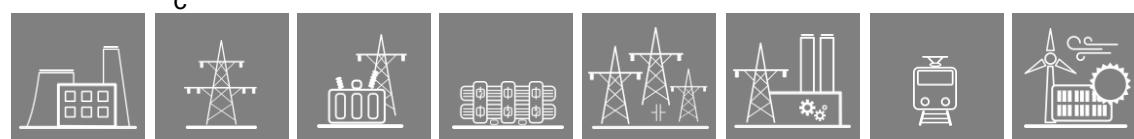
The **inputs** are

- the RMS value of the fundamental Fourier component of the residual current (IN=3Io),
- parameters,
- status signals.

The **outputs** are

- the binary output status signals.

The **software modules** of the residual overcurrent protection function:


Characteristics

This module calculates the required time delay based on the RMS value of the fundamental Fourier component of the residual current.

Decision logic

The decision logic module combines the status signals to generate the trip command of the function.

The following description explains the details of the individual components.

3.1.4.3. The definite time and the inverse type characteristics

This module calculates the required time delay based on the Fourier components of the residual current. The formulas applied are described in Chapter 1.1.

The **inputs** are the basic Fourier components of the residual current (INFour) and parameters.

The **outputs** are the internal status signals of the function. These indicate the started state and the generated trip command if the time delay determined by the characteristics expired.

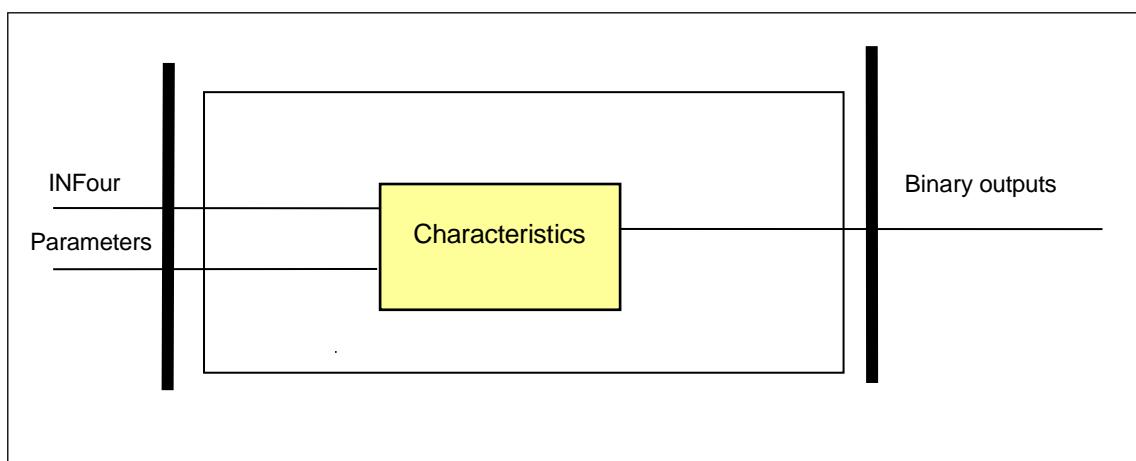
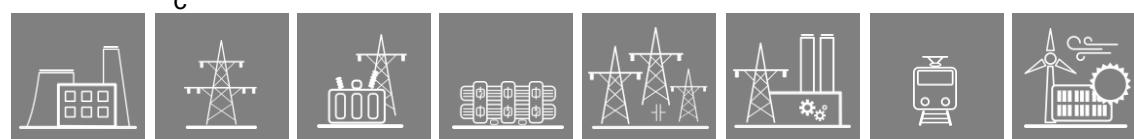


Figure 1-3 Schema of the characteristic calculation

Enumerated parameter

Parameter name	Title	Selection range	Default
Parameter for type selection			
TOC51N_Oper_EPar_	Operation	Off, DefinitTime, IEC Inv, IEC VeryInv, IEC ExtInv, IEC LongInv, ANSI Inv, ANSI ModInv, ANSI VeryInv, ANSI ExtInv, ANSI LongInv, ANSI LongVeryInv, ANSI LongExtInv	Off

Table 1-3 The enumerated parameters of the residual overcurrent protection function


Integer parameters

Parameter name	Title	Unit	Min	Max	Step	Default
Starting current parameter:						
TOC51N_StCurr_IPar_	Start Current *	%	10	1000	1	50
TOC51N_StCurr_IPar_	Start Current **	%	5	1000	1	50

* $I_n = 1 \text{ A or } 5 \text{ A}$

** $I_n = 200 \text{ mA or } 1 \text{ A}$

Table 1-4 The integer parameters of the residual overcurrent protection function

Float parameter

Parameter name	Title	Unit	Min	Max	Step	Default
Time multiplier of the inverse characteristics (OC module)						
TOC51N_Multip_FPar_	Time Multiplier		0.05	15	0.01	1.0

Table 1-5 Float parameter of the OC function block

Timer parameters

Parameter name	Title	Unit	Min	Max	Step	Default
Minimal time delay for the inverse characteristics:						
TOC51N_MinDel_TPar_	Min Time Delay *	msec	40	60000	1	100
Definite time delay:						
TOC51N_DefDel_TPar_	Definite Time Delay **	msec	40	60000	1	100
Reset time delay for the inverse characteristics:						
TOC51N_Reset_TPar_	Reset Time*	msec	60	60000	1	100

*Valid for inverse type characteristics only

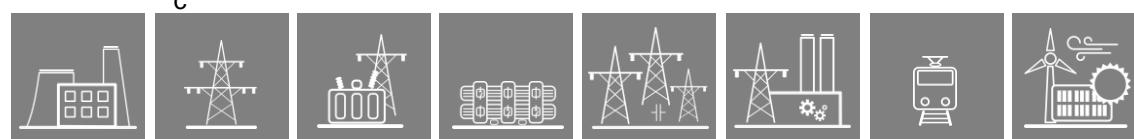

**Valid for definite type characteristics only

Table 1-6 Timer parameters of the residual overcurrent protection function

The **binary output status signals** of the residual overcurrent protection function are listed in Table 1-7.

Binary output signals	Signal title	Explanation
TOC51N_St_Grl_	Start L1	Starting of the function
TOC51N_Tr_Grl_	Trip L1	Trip command of the function

Table 1-7 The binary output status signals of the residual overcurrent protection function

3.1.4.4. The decision logic (Decision logic)

The decision logic module combines the status signals to generate the trip command of the function.

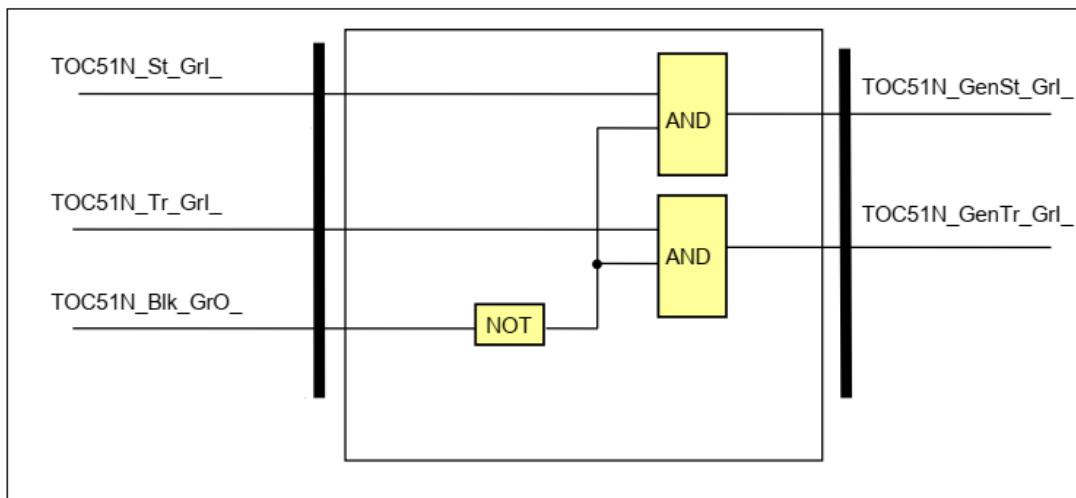
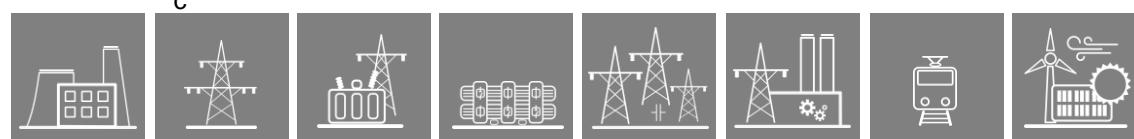


Figure 1-4 The (simplified) logic scheme of the residual overcurrent protection function

Binary input signals	Signal title	Explanation
TOC51N_St_Grl_	Start	Starting of the function
TOC51N_Tr_Grl_	Trip	Trip command of the function

Table 1-8 The binary input status signals of the residual overcurrent protection function

Binary status signals


The residual overcurrent protection function has a binary input signal, which serves the purpose of disabling the function. **The conditions of disabling are defined by the user, applying the graphic equation editor.**

Binary status signal	Explanation
TOC51N_Blk_GrO_	Output status of a graphic equation defined by the user to disable the residual overcurrent protection function.

Table 1-9 The binary input signal of the residual overcurrent protection function

Binary output signals	Signal title	Explanation
TOC51N_GenSt_Grl_	General Start	General starting of the function
TOC51N_GenTr_Grl_	General Trip	General trip command of the function

Table 1-10 The binary output status signals of the residual overcurrent protection function

3.1.4.5. Technical summary

3.1.4.5.1. Technical data

Function	Value	Accuracy
Operating accuracy *	$20 \leq G_s \leq 1000$	< 3 %
Operate time accuracy		$\pm 5\%$ or ± 15 ms, whichever is greater
Reset ratio	0,95	
Reset time *	Dependent time char. Definite time char. Approx 60 ms	< 5% or ± 35 ms, whichever is greater
Transient overreach		2 %
Pickup time	≤ 40 ms	
Overshot time	Dependent time char. 30 ms Definite time char. 50 ms	
Influence of time varying value of the input current (IEC 60255-151)		< 4 %

* Measured in version $I_n = 200$ mA

Table 1-11 Technical data of the residual overcurrent protection function

3.1.4.5.2. The parameters

The parameters are summarized in Chapter 1.3.

3.1.4.5.3. The binary input status signals

Binary input signal

The residual overcurrent protection function has a binary input signal, which serves the purpose of disabling the function. **The conditions of disabling are defined by the user, applying the graphic equation editor.**

Binary input signal	Explanation
TOC51N_Blk_GrO_	Output status of a graphic equation defined by the user to disable the residual overcurrent protection function.

Table 1-12 The binary input signal of the residual overcurrent protection function

3.1.4.5.4. The binary output status signals

The **binary output status signals** of the residual overcurrent protection function are listed in Table 1-13.

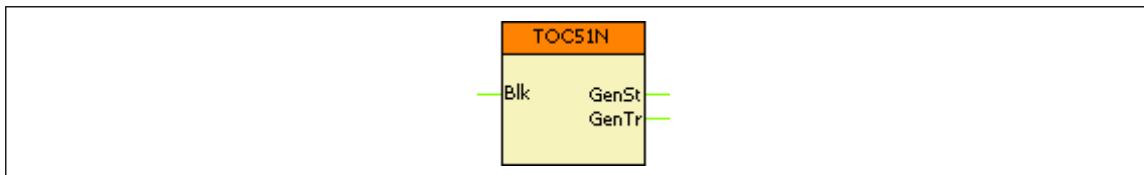
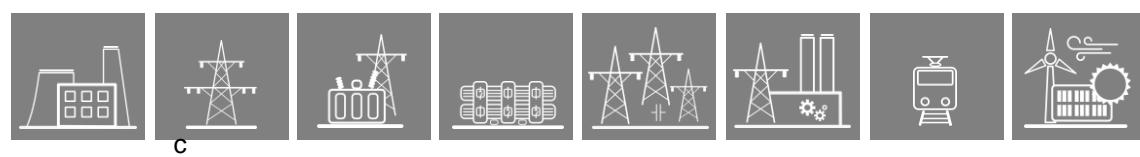

Binary output signals	Signal title	Explanation
TOC51N_GenSt_Grl_	General Start	General starting of the function
TOC51N_GenTr_Grl_	General Trip	General trip command of the function

Table 1-13 The binary output status signals of the residual overcurrent protection function



3.1.4.5.5. The function block

The function block of the residual overcurrent protection function is shown in [Figure 1-5](#). This block shows all binary input and output status signals that are applicable in the graphic equation editor.

Figure 1-5 The function block of the residual overcurrent protection function

3.1.5. Definite time overvoltage protection function

3.1.5.1. Application

The definite time overvoltage protection function measures three voltages. If any of them is above the level defined by parameter setting, then a start signal is generated for the phases individually.

3.1.5.2. Mode of operation

The function generates start signals for the phases individually. The general start signal is generated if the voltage in any of the three measured voltages is above the level defined by parameter setting value.

Note that in medium voltage applications the function uses the phase-to-phase voltages by default.

The function generates a trip command only if the time delay has expired and the parameter selection requires a trip command as well.

3.1.5.3. Operating characteristics

$$t(G) = t_{OP} \text{ when } G > G_s$$

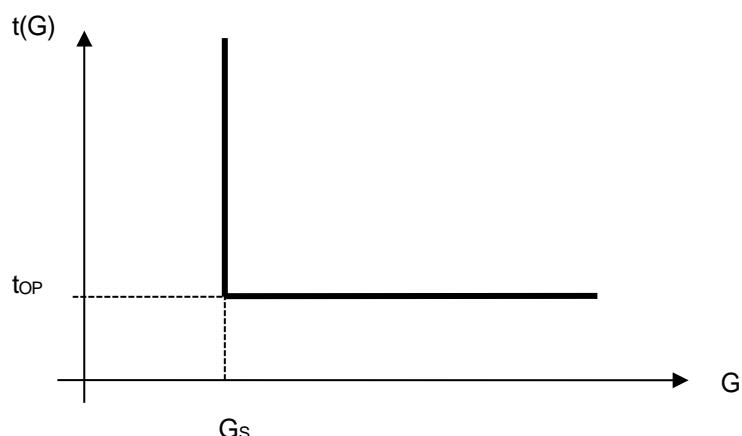
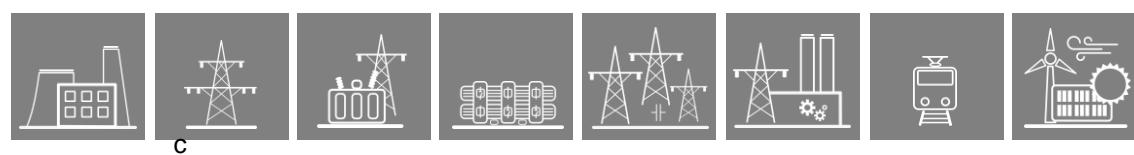



Figure 1-1 Overvoltage definite time characteristic

where	
t_{OP} (seconds)	theoretical operating time if $G > G_s$, fix, according to the parameter setting,
G	measured value of the characteristic quantity, Fourier base harmonic of the phase voltages (or phase-to-phase voltages),
G_s	setting value of the characteristic quantity.

3.1.5.4. Structure of the definite time overvoltage protection algorithm

Fig.1-2 shows the structure of the definite time overvoltage protection (TOV59) algorithm.

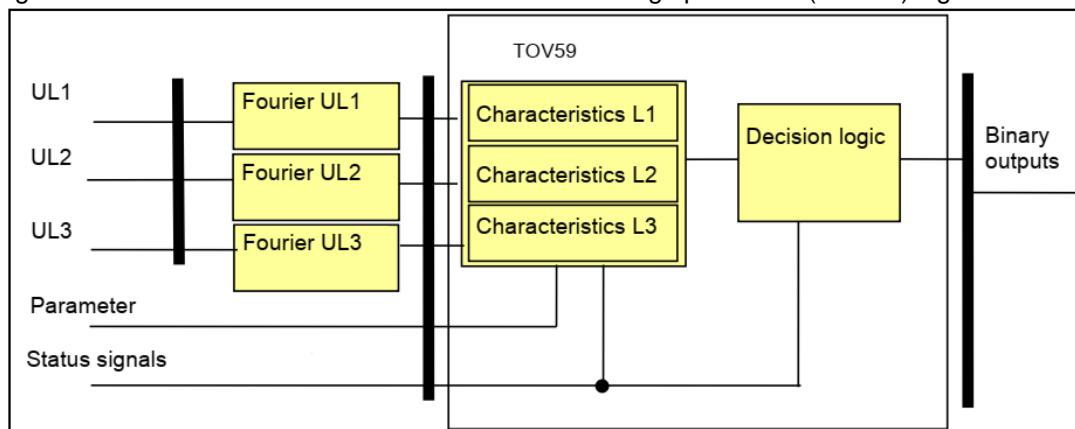


Figure 1-2 Structure of the definite time overvoltage protection algorithm

The **inputs** are

- the RMS values of the fundamental Fourier component of three phase voltages,
- parameters,
- status signals.

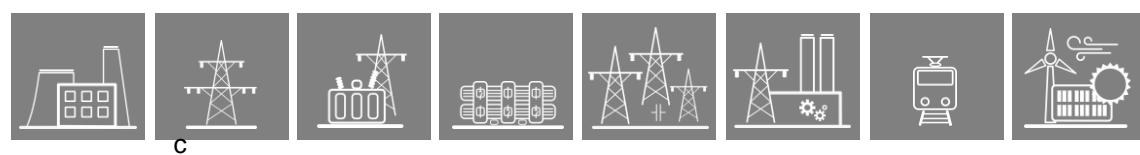
The **outputs** are

- the binary output status signals.

The **software modules** of the definite time overvoltage protection function:

Fourier calculations

These modules calculate the basic Fourier components of the phase voltages individually (not part of the TOV59 function). In medium voltage applications these are changed to phase-to-phase voltages.


Characteristics

This module calculates the required time delay based on the Fourier components of the phase (or phase-to-phase) voltages.

Decision logic

The decision logic module combines the status signals to generate the trip command of the function.

The following description explains the details of the individual components.

3.1.5.5. The Fourier calculation (Fourier)

These modules calculate the basic Fourier components of the phase voltages individually. They are not part of the TOV59 function; they belong to the preparatory phase.

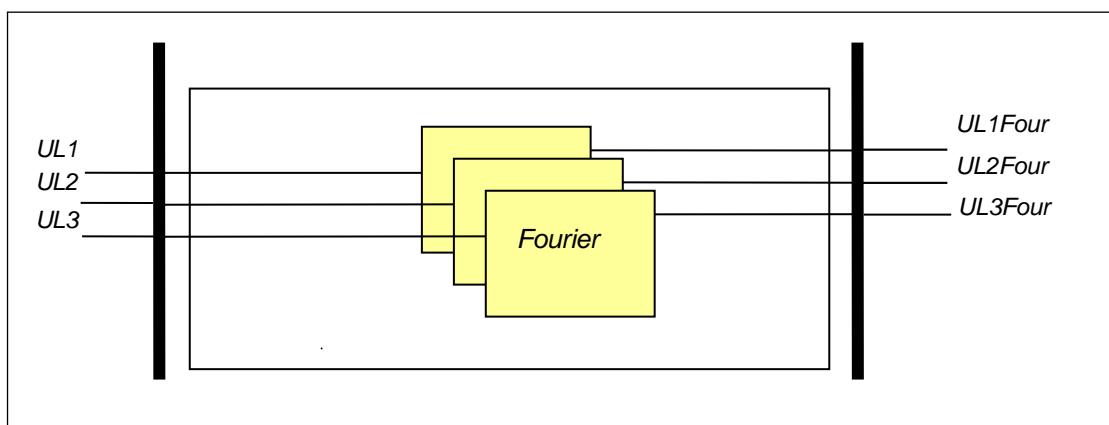
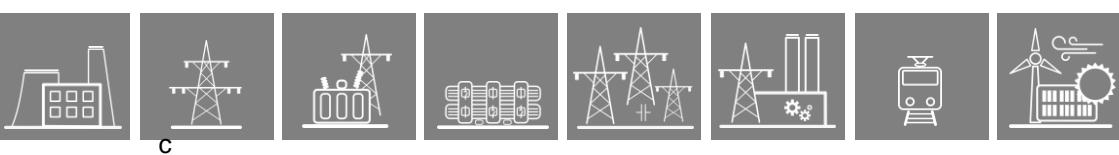



Figure 1-3 Schema of the Fourier calculation

The **inputs** are the sampled values of the three phase voltages (UL1, UL2, UL3)

The **outputs** are the RMS values of the basic Fourier components of the analyzed voltages (UL1Four, UL2Four, UL3Four).

The phase-to-phase voltages (if used) are also calculated here.

3.1.5.6. The definite time characteristics (Characteristics)

This module decides the starting of the function based on the Fourier components of the phase voltages and it counts the time delay. The time delay is defined by the parameter setting, if the voltages are above the setting value.

The **inputs** are the RMS values of the basic Fourier components of the phase (or the calculated phase-to-phase) voltages (UL1Four, UL2Four, UL3Four) and parameters.

The **outputs** are the status signals of the three phases individually. These indicate the started state and the generated trip command if the time delay determined by the setting is expired.

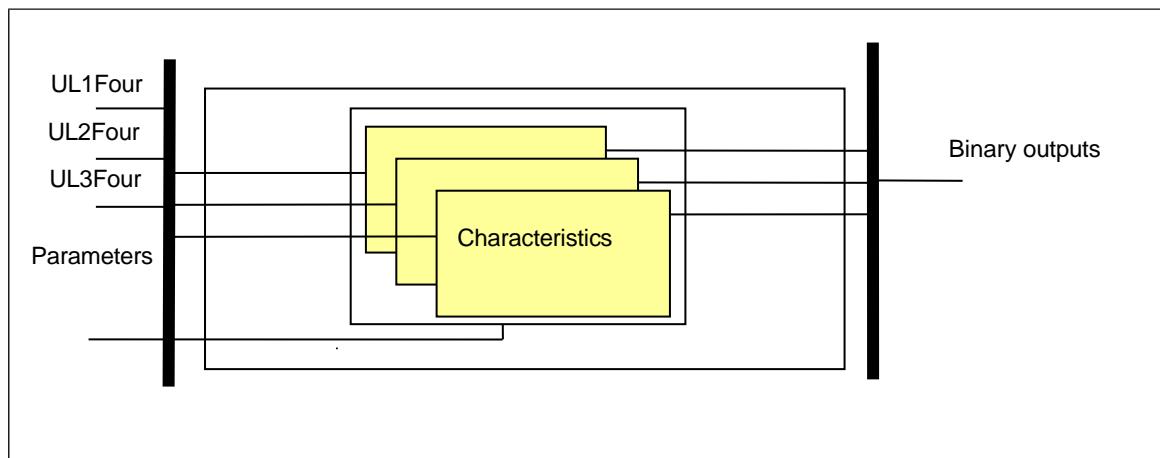


Figure 1-4 Schema of the definite time characteristic calculation

Enumerated parameter

Parameter name	Title	Selection range	Default
Enabling or disabling the overvoltage protection function			
TOV59_Oper_EPar_	Operation	Off, On	Off

Table 1-1 The enumerated parameter of the overvoltage protection function

Integer parameter

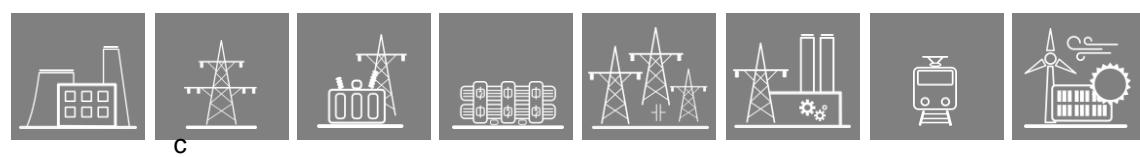

Parameter name	Title	Unit	Min	Max	Step	Default
Voltage level setting. If the measured voltage is above the setting value, the function generates a start signal.						
TOV59_StVol_IPar_	Start Voltage	%	30	130	1	110

Table 1-2 Integer parameter of the overvoltage protection function

Floating point parameter

Parameter name	Title	Unit	Min	Max	Step	Default
After starting the function drops off if the measured voltage is below the start voltage with at least this percentage.						
TOV59_ResetRatio_FPar_	Reset Ratio	%	1	10	1	5

Table 1-3 Floating point parameter of the overvoltage protection function

Boolean parameter

Parameter name	Title	Default	Explanation
TOV59_StOnly_BPar_	Start Signal Only	0	Selection if starting and trip signal or starting signal only is to be generated. Set 0 for trip command generation.

Table 1-4 The Boolean parameters of the overvoltage protection function

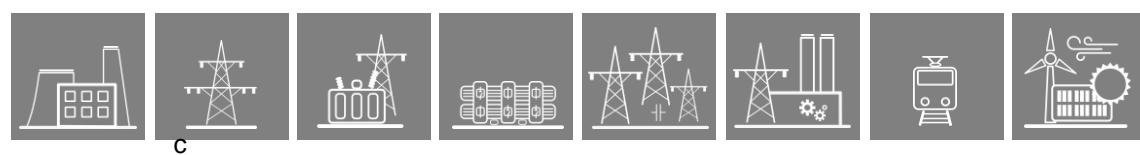
Timer parameter

Parameter name	Title	Unit	Min	Max	Step	Default
Time delay of the overvoltage protection function.						
TOV59_Delay_TPar_	Time Delay	ms	0	60000	1	100

Table 1-5 The timer parameter of the overvoltage protection function

The **binary output status signals** of the three-phase definite time overvoltage protection function are listed in .*In case of phase-to-phase voltages, these are changed to L12, L23, L31 respectively.

**The trip signals are not published for the phases individually


Table 1-6 below.

Binary output status signal	Signal title	Explanation
TOV59_StL1_Grl_	StL1	Starting of the function in phase L1*
TOV59_Trl1_Grl_	TrL1**	Trip command of the function in phase L1*
TOV59_StL2_Grl_	StL2	Starting of the function in phase L2*
TOV59_Trl2_Grl_	TrL2**	Trip command of the function in phase L2*
TOV59_StL3_Grl_	StL3	Starting of the function in phase L3*
TOV59_Trl3_Grl_	TrL3**	Trip command of the function in phase L3*

*In case of phase-to-phase voltages, these are changed to L12, L23, L31 respectively.

**The trip signals are not published for the phases individually

Table 1-6 The binary output status signals of the definite time overvoltage protection function

3.1.5.7. The decision logic (Decision logic)

The decision logic module combines binary signals and Boolean parameters to generate the trip command of the function.

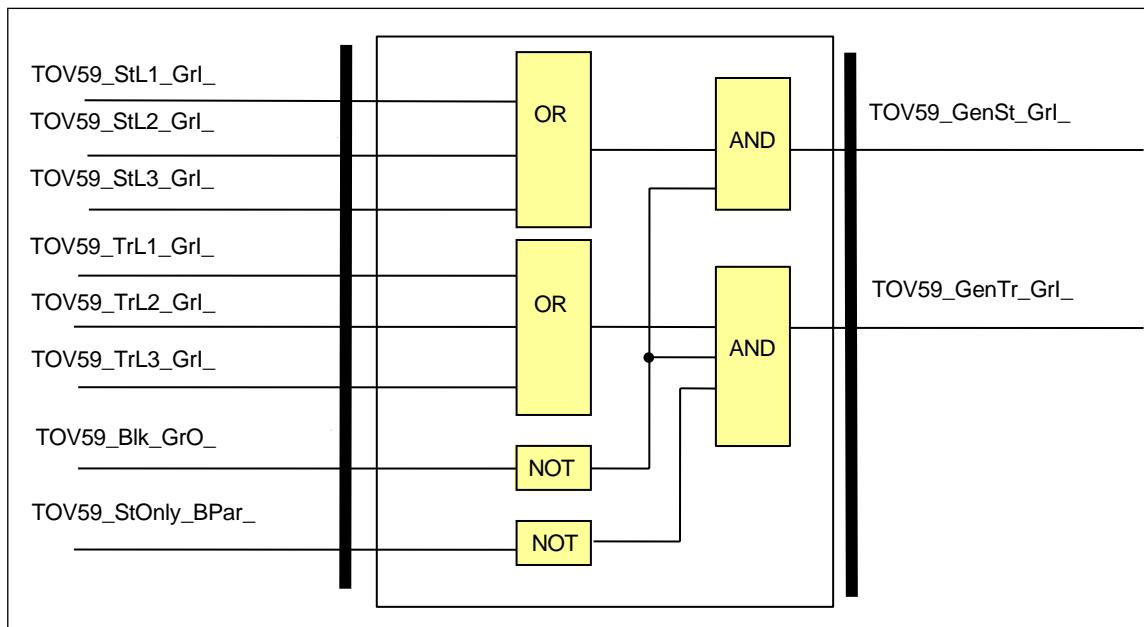


Figure 1-5 The decision logic scheme of the definite time overvoltage protection function

Binary input signal	Signal title	Explanation
TOV59_StL1_Grl_	StL1	Starting of the function in phase L1*
TOV59_TrL1_Grl_	TrL1**	Trip command of the function in phase L1*
TOV59_StL2_Grl_	StL2	Starting of the function in phase L2*
TOV59_TrL2_Grl_	TrL2**	Trip command of the function in phase L2*
TOV59_StL3_Grl_	StL3	Starting of the function in phase L3*
TOV59_TrL3_Grl_	TrL3**	Trip command of the function in phase L3*

*In case of phase-to-phase voltages, these are changed to L12, L23, L31 respectively.

**The trip signals are not published for the phases individually

Table 1-7 The binary input signals of the definite time overvoltage protection function

Boolean parameter

Parameter name	Title	Default
Enabling start signal only:		
TOV59_StOnly_BPar_	Start Signal Only	FALSE

Table 1-8 The Boolean parameter of the definite time overvoltage protection function

Binary status signals

The overvoltage protection function has a binary input signal, which serves the purpose of disabling the function. The conditions of disabling are defined by the user, applying the graphic equation editor.

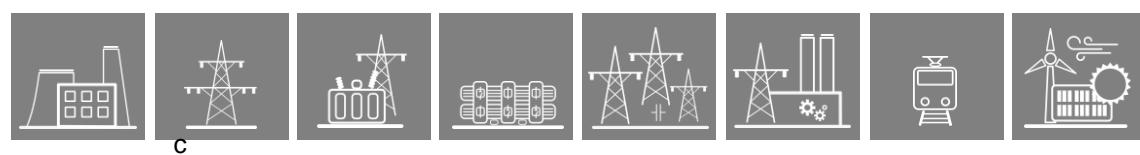

Binary input status signal	Explanation
TOV59_Blk_GrO_	Output status of a graphic equation defined by the user to disable the definite time overvoltage protection function.

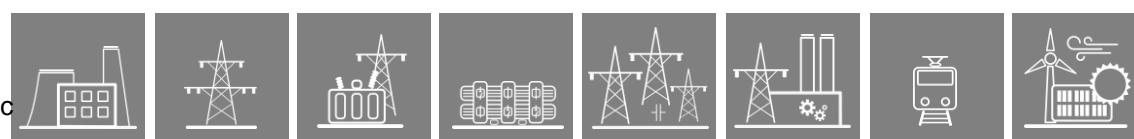
Table 1-9 The binary input signal of the definite time overvoltage protection function

Binary output status signal	Title	Explanation
TOV59_StL1_Grl_	StL1	Start in phase L1*
TOV59_StL2_Grl_	StL2	Start in phase L2*
TOV59_StL3_Grl_	StL3	Start in phase L3*
TOV59_GenSt_Grl_	GenSt	General start signal
TOV59_GenTr_Grl_	GenTr	General trip command

*In case of phase-to-phase voltages, these are changed to L12, L23, L31 respectively.

Table 1-10 The binary output status signals of the definite time overvoltage protection function

3.1.5.8. Technical summary


3.1.5.8.1. Technical data

Function	Value	Accuracy
Pick-up starting accuracy		$< \pm 0,5 \%$
Reset time $U > \rightarrow U_n$ $U > \rightarrow 0$	60 ms 50 ms	
Operate time accuracy		$< \pm 20 \text{ ms}$
Minimum operate time	50 ms	

Table 1-11 Technical data of the overvoltage protection function

3.1.5.8.2. Parameters

The parameters are summarized in Chapter 1.6 Table 1-1, Table 1-2, Table 1-3, Table 1-4, Table 1-5.

3.1.5.8.3. Binary output status signals

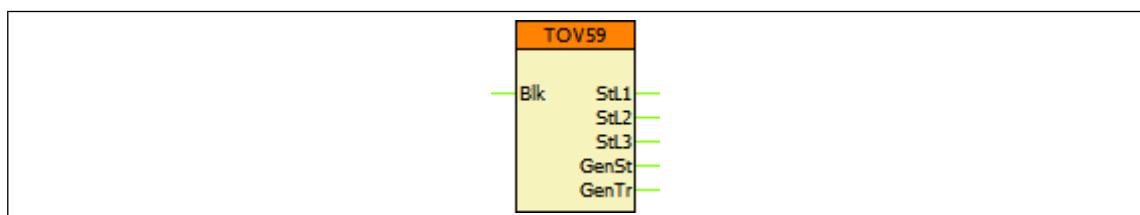
The **binary output status signals** of overvoltage protection function are listed in [Table 1-12](#)
The binary output status signals of the overvoltage protection function

Binary status signal	Title	Explanation
TOV59_StL1_Grl_	StL1	Start in phase L1
TOV59_StL2_Grl_	StL2	Start in phase L2
TOV59_StL3_Grl_	StL3	Start in phase L3
TOV59_GenSt_Grl_	GenSt	General start signal
TOV59_GenTr_Grl_	GenTr	General trip command

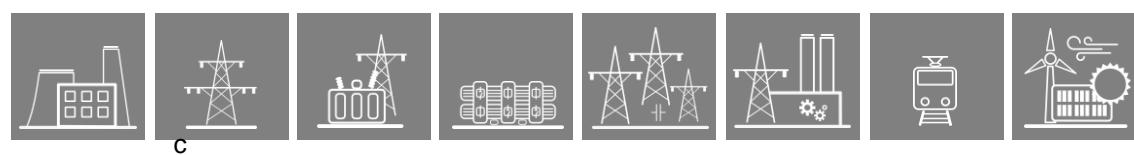
Table 1-12 The binary output status signals of the overvoltage protection function

3.1.5.8.4. Binary input status signals

Binary input signals


The overvoltage protection function has a binary input signal, which serves the purpose of disabling the function. **The conditions of disabling are defined by the user, applying the graphic equation editor.**

Binary status signal	Title	Explanation
TOV59_Blk_GrO_	Blk	Blocking of the overvoltage protection function


Table 1-13 The binary input signal of the overvoltage protection function

3.1.5.8.5. The function block

The function block of the overvoltage protection function is shown in [Figure 1-6](#). This block shows all binary input and output status signals that are applicable in the graphic equation editor.

Figure 1-6 The function block of the overvoltage protection function

3.1.6. Residual definite time overvoltage protection function

The residual definite time overvoltage protection function operates according to definite time characteristics, using the RMS values of the fundamental Fourier component of the zero sequence voltage ($UN=3U_0$).

3.1.6.1. Operating characteristics

$$t(G) = t_{OP} \text{ when } G > G_s$$

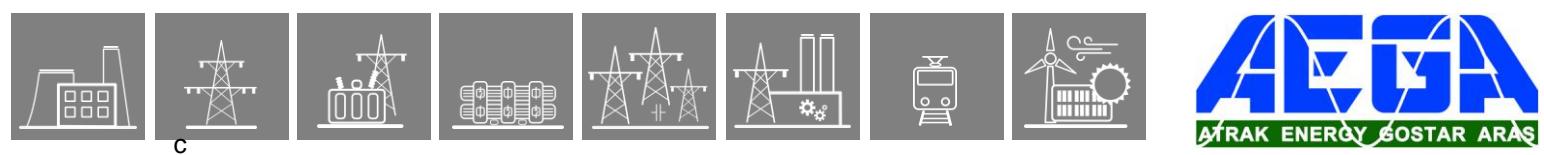



Figure 1-1 Overvoltage independent time characteristic

Where

t_{OP} (seconds)	theoretical operating time if $G > G_s$, fix, according to the parameter setting value,
G	measured value of the characteristic quantity, Fourier base harmonic of the phase voltages,
G_s	setting value of the characteristic quantity (TOV59N_StCurr_IPar_, Start voltage).

3.1.6.2. Structure of the residual definite time overvoltage protection algorithm

Fig.1-2 shows the structure of the residual definite time overvoltage protection (TOV59N) algorithm.

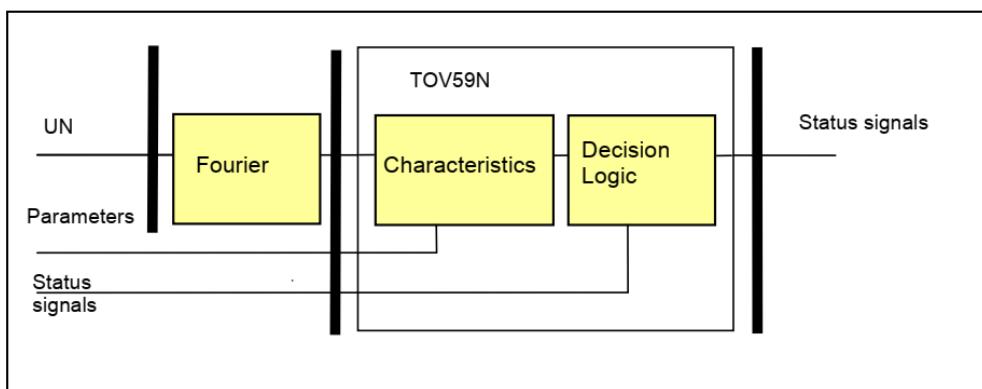


Figure 1-2 Structure of the definite time residual overvoltage protection algorithm

The **inputs** are

- the RMS values of the fundamental Fourier component of the residual or neutral voltage ($UN=3U_o$),
- parameters,
- status signals.

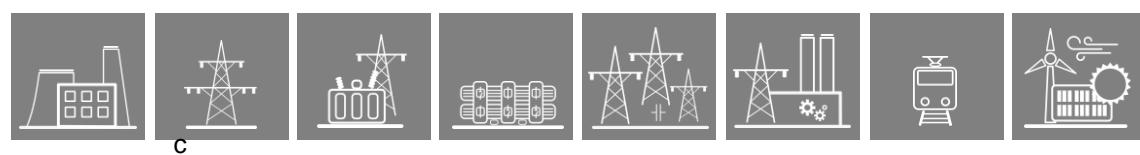
The **outputs** are

- the binary output status signals.

The **software modules** of the differential protection function:

Fourier calculations

These modules calculate the basic Fourier components of the residual voltage (not part of the TOV59 function).


Characteristics

This module calculates the required time delay based on the Fourier components of the residual voltage.

Decision logic

The decision logic module combines the status signals to generate the trip command of the function.

The following description explains the details of the individual components.

3.1.6.3. The Fourier calculation (Fourier)

This module calculates the RMS value of the fundamental Fourier component of the residual or neutral voltage ($UN=3U_o$). This module is not part of the TOV59N function; it belongs to the preparatory phase.

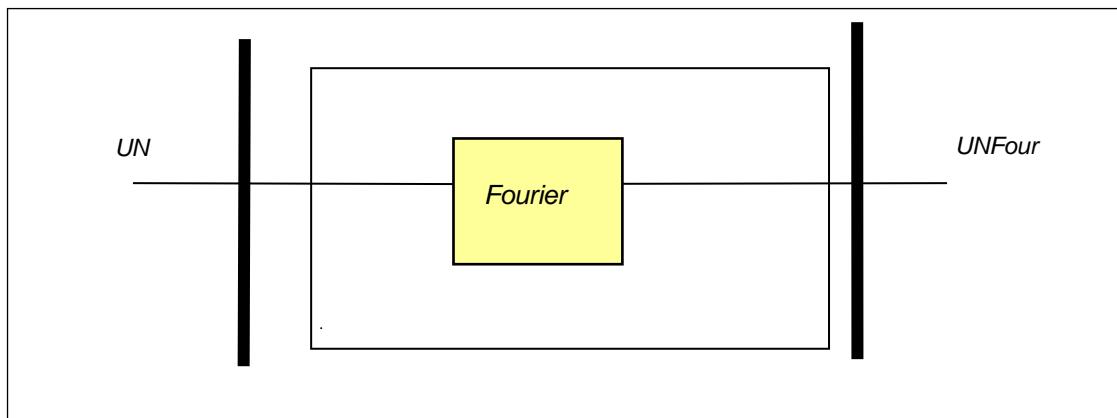


Figure 1-3 Schema of the Fourier calculation

The **input** is the sampled value of the residual voltage ($UN=3U_o$).

The **output** is the RMS value of the fundamental Fourier component of the residual or neutral voltage ($UNFour$).

3.1.6.4. The definite time characteristics (Characteristics)

This module decides the starting of the function and counts the required time delay based on the Fourier components of the residual voltage. The time delay is defined by the parameter setting value, if the voltage is above the voltage setting value.

The **inputs** are:

- the RMS value of the fundamental Fourier component of the residual or neutral voltage ($UNFour$),
- parameters.

The **outputs** are the status signals of the function. These indicate the started state of the function.

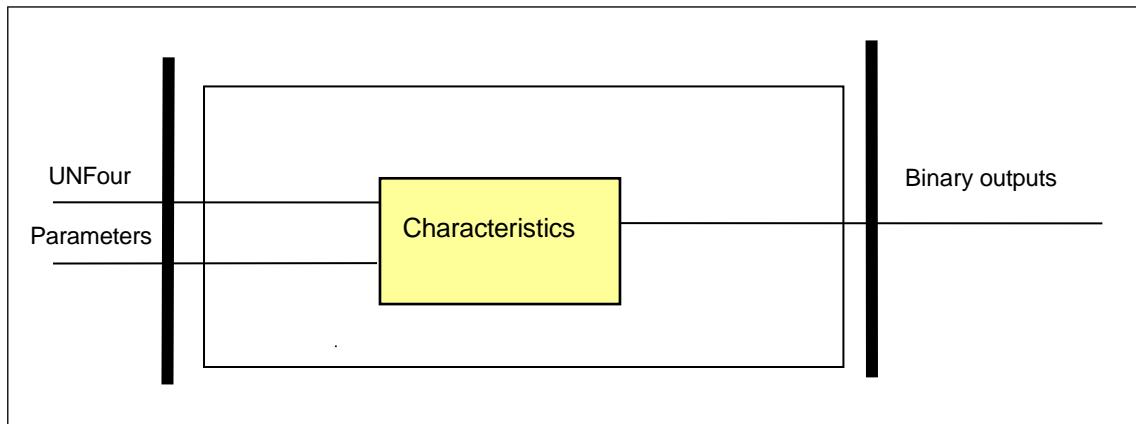
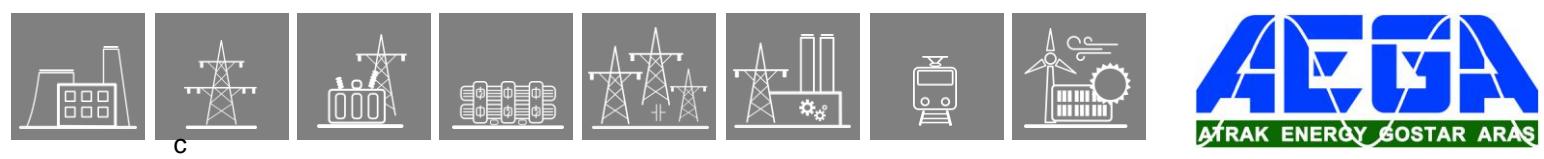



Figure 1-4 Schema of the residual definite time characteristic calculation

Enumerated parameter

Parameter name	Title	Selection range	Default
Parameter for enabling/disabling the function			
TOV59N_Oper_EPar_	Operation	Off, On	On

Table 1-1 The enumerated parameters of the residual definite time overvoltage protection function

Integer parameter

Parameter name	Title	Unit	Min	Max	Step	Default
Starting voltage parameter:						
TOV59N_StVol_IPar_	Start Voltage	%	2	60	1	30

Table 1-2 The integer parameters of the residual definite time overvoltage protection function

Timer parameter

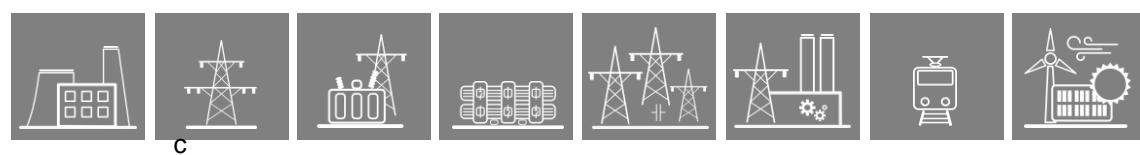

Parameter name	Title	Unit	Min	Max	Step	Default
Definite time delay:						
TOV59N_Delay_TPar_	Time Delay	msec	0	60000	1	100

Table 1-3 Timer parameter of the residual definite time overvoltage protection function

The **binary output status signals** of the residual definite time overvoltage protection function are listed in Table 1-4.

Binary output signals	Signal title	Explanation
TOV59N_St_Grl_	Start L1	Starting of the function
TOV59N_Tri_Grl_	Trip L1	Trip command of the function

Table 1-4 The binary output status signals of the residual definite time overvoltage protection function

3.1.6.5. The decision logic (Decision logic)

The decision logic module combines the status signals, binary and enumerated parameters to generate the trip command of the function.

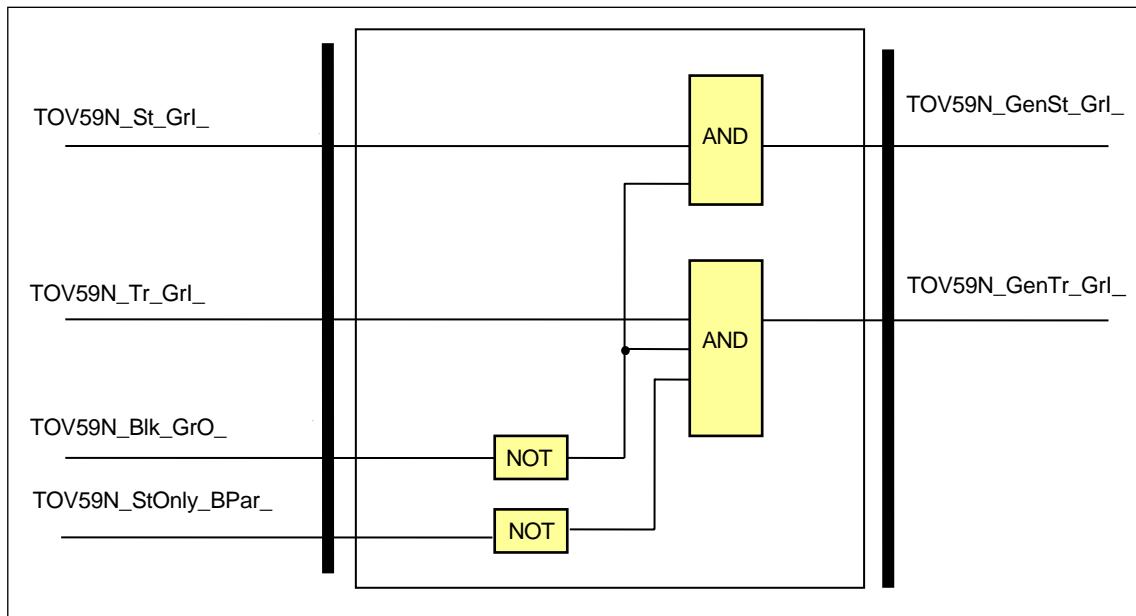


Figure 1-5 The logic scheme of the residual definite time overvoltage protection function

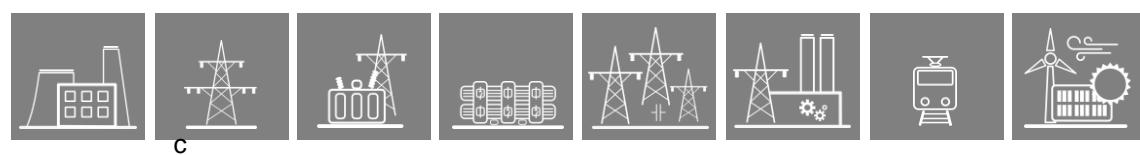

Binary input signals	Signal title	Explanation
TOV59N_St_Grl_	Start L1	Starting of the function
TOV59N_Tr_Grl_	Trip L1	Trip command of the function

Table 1-5 The binary input status signals of the decision logic scheme for the residual definite time overvoltage protection function

Boolean parameter

Parameter name	Title	Default
Enabling start signal only:		
TOV59N_StOnly_BPar_	Start Signal Only	FALSE

Table 1-6 The Boolean parameter of the residual definite time overvoltage protection function

Binary status signals

The overvoltage protection function has a binary input signal, which serves the purpose of disabling the function. **The conditions of disabling are defined by the user, applying the graphic equation editor.**

Binary status signal	Explanation
TOV59N_Blk_GrO_	Output status of a graphic equation defined by the user to disable the residual definite time overvoltage protection function.

Table 1-7 The binary input signal of the residual definite time overvoltage protection function

Binary output signals	Signal title	Explanation
TOV59N_GenSt_Grl_	General Start	General starting of the function
TOV59N_GenTr_Grl_	General Trip	General trip command of the function

Table 1-8 The binary output status signals of the residual definite time overvoltage protection function

3.1.6.6. Technical summary

3.1.6.6.1. Technical data

Function	Value	Accuracy
Pick-up starting accuracy	2 – 8 % 8 – 60 %	< ± 2 % < ± 1.5 %
Reset time U> → Un U> → 0	60 ms 50 ms	
Operate time	50 ms	< ± 20 ms

Table 1-9 Technical data of the residual definite time overvoltage protection function

3.1.6.6.2. The parameters

The parameters are summarized in Chapters 1.4 and 1.5.

3.1.6.6.3. The binary output status signals

The **binary output status signals** of the residual definite time overvoltage protection function are listed in Table 1-10.

Binary output signals	Signal title	Explanation
TOV59N_GenSt_Grl_	General Start	General starting of the function
TOV59_N_GenTr_Grl_	General Trip	General trip command of the function

Table 1-10 The binary output status signals of the residual definite time overvoltage protection function

3.1.6.6.4. The binary input status signals

The residual definite time overvoltage protection function has a binary input signal, which serves the purpose of disabling the function. **The conditions of disabling are defined by the user, applying the graphic equation editor.**

Binary input signal	Explanation
TOV59N_Blk_GrO_	Output status of a graphic equation defined by the user to disable the residual definite time overvoltage protection function.

Table 1-11 The binary input signal of the residual definite time overvoltage protection function

3.1.6.6.5. The function block

The function block of the residual overvoltage protection function is shown in Figure 1-6. This block shows all binary input and output status signals that are applicable in the graphic equation editor.

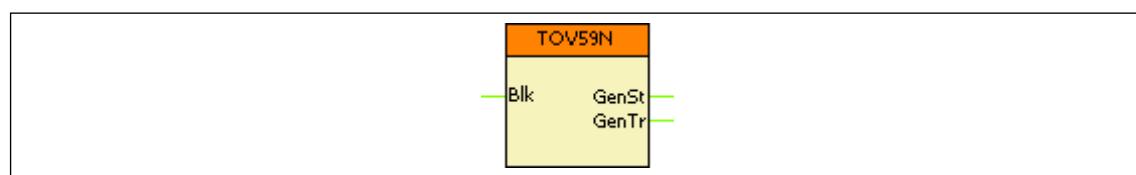
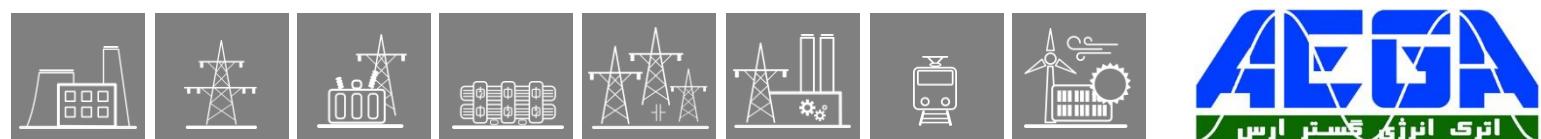



Figure 1-6 The function block of the residual overvoltage protection function

3.1.7. Capacitor unbalance protection for blocks in bridge connection

3.1.7.1. Application

The shunt capacitor banks are usually constructed of capacitor units, and the units contain capacitor elements.

There are constructions of the bank where fuses are connected inside a capacitor unit, in series with an element or a group of elements. The fuse is connected in series with the element that the fuse is designed to isolate if the element becomes faulty. After the breakdown of an element, the fuse connected to it will blow and isolate it from the remaining part of the capacitor, which allows the unit to continue in service. The blowing of one or more fuses decreases the capacitance value and additionally it will cause voltage changes within the bank.

If no internal fuses are applied, then the breakdown of an element increases the capacitance value and additionally it will cause voltage changes within the bank.

Each time an internal capacitor element fails, a slight change of voltage distribution and current flow within the capacitor bank is encountered. The magnitude of these changes depends upon the number of failed elements and their location within the bank.

The main purpose of the capacitor unbalance protection is to give an alarm or to disconnect the entire capacitor bank when unbalances across healthy capacitors, adjacent to a failed capacitor, are excessive. Normally not more than 10 % unbalance should be allowed (unbalance limit according to IEC 871-1 Shunt capacitors for a.c. power systems having a rated voltage above 1000V – Part 1: General).

If an externally fused capacitor is disconnected by its fuse, a larger voltage and current change is obtained than if single elements are disconnected by internal fuses.

This kind of protection prevents steady-state overvoltage and accelerated aging of the capacitor elements.

Another function of the unbalance protection is to remove the bank from service for a fault not isolated by a fuse or to protect banks that are not internally or externally fused. Unbalance protection is not a replacement for short-circuit protection.

3.1.7.2. Mode of operation

3.1.7.2.1. Construction of the capacitor bank

This version of the capacitor unbalance protection can be applied if the capacitors in the phases are arranged in bridge connection (“H configuration”), according to Figure 1-1.

The capacitors in each phase are arranged in two branches with a current transformer connected between midpoints or close to midpoints of the two branches. Failures anywhere in the branches will cause an unbalance current to flow through the current transformer.

This method is suitable for large capacitor banks since the total bank will be divided into separate protection zones. The method is not influenced by phase voltage unbalances. It may be used in delta- or star-connected banks with the neutral grounded or ungrounded.

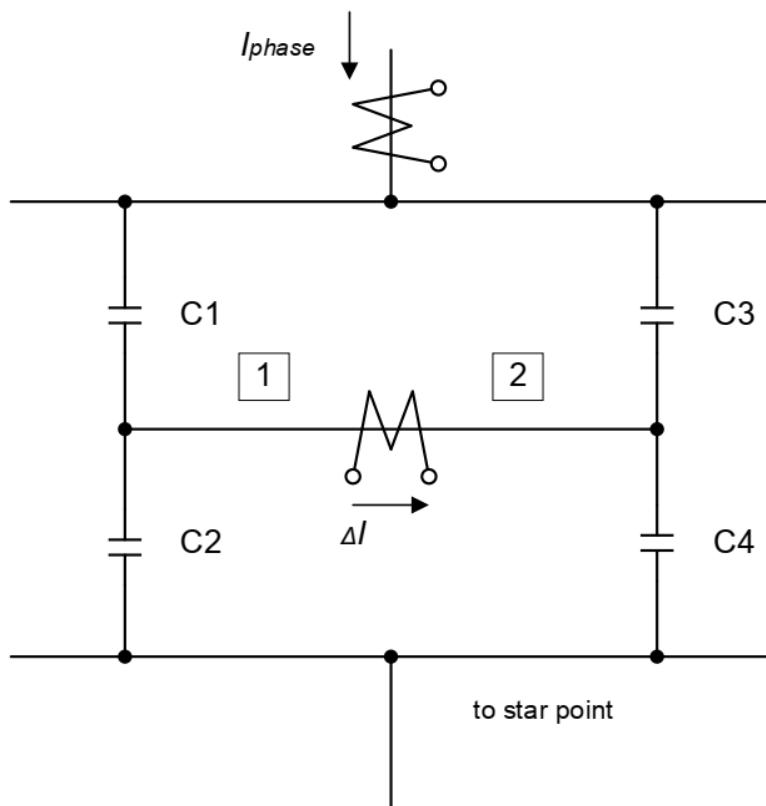
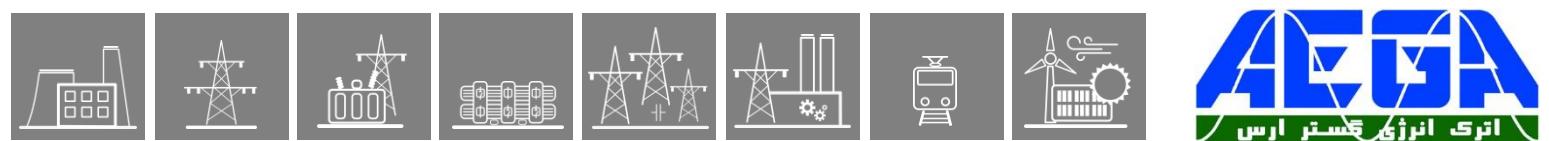



Figure 1-1 Current unbalance in bridge connection (“H configuration”) (drawing in one phase only)

3.1.7.2.2. Effect of the “natural” asymmetry of the capacitor bank

The related standard permits a considerable amount of asymmetry, which can be up to 10%, consequently in healthy state a relatively high current can flow through the current transformer. At commissioning the unbalance protection function stores the vector position and the value of the “natural” unbalance currents as three reference currents ΔI_{ref} and additionally those of one of the phase currents I_{phase_ref} ($= IL1$).

The reference currents are corrected according to the actually measured phase current I_{phase} and the stored I_{phase_ref} reference phase current.

$$\Delta I_{ref_corr} = \Delta I_{ref} \frac{I_{phase}}{I_{phase_ref}}$$

where all current values are complex Fourier base harmonic vectors:

ΔI_{ref} reference current measured in the bridge of all three phases at commissioning,
 ΔI_{ref_corr} corrected reference currents of all three phases,
 I_{phase} measured phase current of one of the three phases ($IL1$),
 I_{phase_ref} phase current of one of the three phases measured at commissioning ($IL1$).

The correction is performed with one phase current in all three phases separately.

NOTE: This approach using a single phase current supposes that the asymmetry of the network itself does not change, or the changes are cleared with high speed by other protection functions. If considerable steady-state changes in the symmetry of the network are expected, then the measurement and correction based a single phase current is not sufficient. In this case, please consult Protecta Co. Ltd. for a solution.

3.1.7.2.3. The energizing quantity (G)

If there are no changes inside the capacitor then no change can be detected in the actually measured unbalance current related to the corrected reference current.

Accordingly, the energizing quantity for evaluation is the difference of the measured currents in the bridges and the corrected reference current:

$$G = dI = \Delta I - \Delta I_{ref_corr}$$

where all current values are complex Fourier base harmonic vectors:

ΔI currents measured in the bridge,
 ΔI_{ref_corr} corrected reference currents (see above).

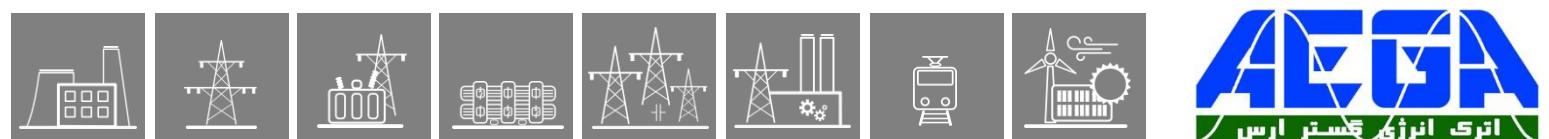
NOTE: The correction is performed in all three phases separately with one phase current.

3.1.7.3. Calibration at commissioning

This is the task of the commissioning to store the reference values for the bridge currents ΔI_{ref} , and that of one of the phase currents I_{phase_ref} in the memory.

For this purpose, the function block has a dedicated binary input: Calib. This input must be activated for the calibration. For the physical means for activation see the description of the configuration. This input may be programmed by the user using the graphic logic editor.

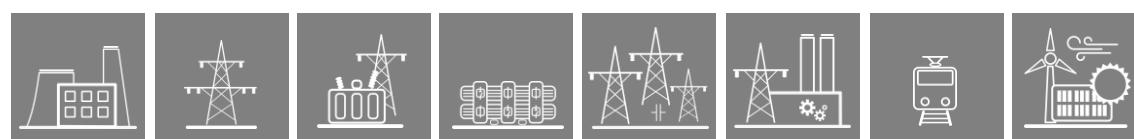
The calibration at the moment of activation can be performed only if the conditions for calibration are fulfilled. The conditions for calibration are:


- The phase currents must be less than $2*I_n$ of the current input,
- The phase currents must be above 70% of the rated capacitor current,
- The bridge currents must be less than the value set by the dedicated parameter.

The calibrated state is indicated by the dedicated binary output of the function Calibrated. This output gets in "true" state only if the calibration procedure in all three phases was successful.

The calibration values are stored in non-volatile memory, separately for each parameter set.

The Reset binary input resets the calibrated state.


Among the "on-line" information the function continuously displays the ΔI currents measured in the bridges. At the moment of calibration these vectors reset to zero vector. See Figure 1-2. At the same time the "Calibrated" field on the screen displays a check-mark. If, however, after calibration any changes happen within the capacitor bank then the displayed values change.

[-] CAPACITOR UNBALANCE

dI L1	0.00	A
dIL1-IL1 angle	0	deg
dI L2	0.00	A
dIL2-IL1 angle	0	deg
dI L3	0.00	A
dIL3-IL1 angle	0	deg
Cap. Fault location	N/A	
Calibrated	<input type="checkbox"/>	
Start Stage1 L1	<input type="checkbox"/>	
Trip Stage1 L1	<input type="checkbox"/>	
Start Stage1 L2	<input type="checkbox"/>	
Trip Stage1 L2	<input type="checkbox"/>	
Start Stage1 L3	<input type="checkbox"/>	
Trip Stage1 L3	<input type="checkbox"/>	
Start Stage2 L1	<input type="checkbox"/>	
Trip Stage2 L1	<input type="checkbox"/>	
Start Stage2 L2	<input type="checkbox"/>	
Trip Stage2 L2	<input type="checkbox"/>	
Start Stage2 L3	<input type="checkbox"/>	
Trip Stage2 L3	<input type="checkbox"/>	
dI123 Current input assignment	Complete	
Iref Current input assignment	Complete	

Figure 1-2 On-line display of the “ $dI=\Delta I$ ” neutral current, referred to the reference current

3.1.7.4. Operating characteristics

The capacitor unbalance protection function is configured with two independent stages.

For the first stage definite time characteristic and several types of inverse characteristics can be selected.

The second stage has a definite time characteristic.

3.1.7.4.1. Definite time characteristic

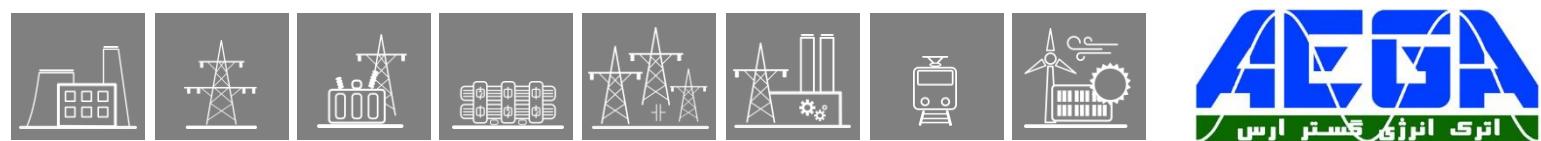

$$t(G) = t_{OP} \text{ when } G > G_S$$

Figure 1-3 Overcurrent definite time characteristic

Where

t_{OP} (seconds)	theoretical operating time if $G > G_S$, fix, according to the preset parameter,
G	measured value of the characteristic quantity, Fourier base harmonic value, see section 1.2.3,
G_S	preset starting value of the characteristic quantity.

3.1.7.4.2. Standard inverse time characteristics

Operating characteristics:

$$t(G) = TMS \left[\frac{k}{\left(\frac{G}{G_S} \right)^\alpha - 1} + c \right] \text{ when } G > G_S$$

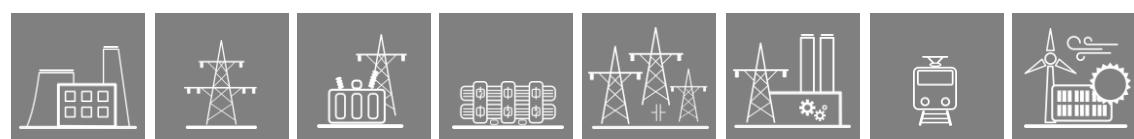
Where

$t(G)$ (seconds)	theoretical operate time with constant value of G ,
k, c	constants characterizing the selected curve (in seconds),
α	constants characterizing the selected curve (no dimension),
G	measured value of the characteristic quantity, Fourier base harmonic value, see section 1.2.3,
G_S	preset starting value of the characteristic quantity,
TMS	preset time multiplier (no dimension).

Table 1-1 The constants of the standard dependent time characteristics

	IEC REF	TITLE	K_R	c	α
1	A	IEC Inv	0,14	0	0,02
2	B	IEC VeryInv	13,5	0	1
3	C	IEC ExtInv	80	0	2
4		IEC LongInv	120	0	1
5		ANSI Inv	0,0086	0,0185	0,02
6	D	ANSI ModInv	0,0515	0,1140	0,02
7	E	ANSI VeryInv	19,61	0,491	2
8	F	ANSI ExtInv	28,2	0,1217	2
9		ANSI LongInv	0,086	0,185	0,02
10		ANSI LongVeryInv	28,55	0,712	2
11		ANSI LongExtInv	64,07	0,250	2

The end of the effective range of the inverse time characteristics (G_D) is:


$$G_d = 20 * G_S$$

Above this value the theoretical operating time is definite:

$$t(G) = TMS \left[\frac{k}{\left(\frac{G_D}{G_S} \right)^\alpha - 1} + c \right] \text{ when } G > G_D = 20 * G_S$$

Additionally, a minimum time delay can be defined by parameter setting. This delay is valid if it is longer than $t(G)$, defined by the formula of the operating characteristics above.

The inverse characteristic is valid above $G_T = 1,1 * G_s$. Above this value the function is guaranteed to operate.

Resetting characteristics:

- For IEC type characteristics the resetting is after a fix time delay defined by the parameter CapUnB3_Reset_TPar_ (Reset Time),
- for ANSI types however according to the formula below:

$$t_r(G) = TMS \left[\frac{k_r}{1 - \left(\frac{G}{G_S} \right)^\alpha} \right] \text{ when } G > G_S$$

Where

$t_r(G)$ (seconds)	theoretical reset time with constant value of G ,
k_r	constants characterizing the selected curve (in seconds),
α	constants characterizing the selected curve (no dimension),
G	measured value of the characteristic quantity, Fourier base harmonic, see section 1.2.3,
G_S	preset value of the characteristic quantity (CapUnB3_StCurr1_IPar_, Start current 1),
TMS	preset time multiplier (no dimension).

Table 1-2 The resetting constants of the standard dependent time characteristics

	IEC REF	TITLE	K_R	α
1	A	IEC Inv	Resetting after fix time delay, according to preset parameter CapUnB3_Reset_TPar_ “Reset Time”	
2	B	IEC VeryInv		
3	C	IEC ExtInv		
4		IEC LongInv		
5		ANSI Inv	0,46	2
6	D	ANSI ModInv	4,85	2
7	E	ANSI VeryInv	21,6	2
8	F	ANSI ExtInv	29,1	2
9		ANSI LongInv	4,6	2
10		ANSI LongVeryInv	13,46	2
11		ANSI LongExtInv	30	2

3.1.7.5. Fault location

The vector measurement enables identification of the faulty capacitor unit. For the explanation of the principle of fault location consider the positive direction of the current I_{phase} and ΔI as indicated in Figure 1-1: the current flows from capacitor unit 1 to capacitor unit 2.

Now consider a fault in phase L1, inside unit 1 in the capacitor C1, which increases the capacitance value, consequently, decreases the impedance related to the impedance of C3. The current in C1 increases related to the current of C3, consequently the current flows in the bridge from the unit 1 towards the unit 2. It is obvious that this current is in phase with the current of the original phase capacitor "IL1", as it is indicated in Figure 1-4. Consequently the ΔI current measured in the bridge is in phase with the current of the original phase capacitor. To permit some asymmetry changes in the network and some measuring error, this current is inside the shaded area between -15° and $+15^\circ$. The on-line measurement will display the increased "dI" value with "dI-IL1 angle" in this range. The related event indicates "L1-1". The same current vector flows in the bridge if the value of the capacitor 4 increases, here the event should be "L1-4". Based on the current measurement these two events cannot be separated so the common fault identification is: "L1-1 or L1-4"

If the capacitor elements are not fused, then the breakdown of a capacitor element will short-circuit a "layer" of capacitors. The capacitance increases and consequently also the capacitive current increases. This case was described in the explanation above.

If, however, the capacitor elements are individually fused then the breakdown of a capacitor element is disconnected from the "layer" of capacitors. The resultant capacitance decreases, and the result is opposite to the explanation in Figure 1-4.

For correct evaluation the information is needed: whether internal fuses are applied or not. This is to be set by the Boolean parameter "Internal fuse".

The event list related to the capacitor faults can contain the following messages:

Table 1-3 Capacitor fault location

MESSAGE	EXPLANATION
L1-1 or L1-4	Fault in phase L1, C1 or C4
L2-1 or L2-4	Fault in phase L2, C1 or C4
L3-1 or L3-4	Fault in phase L3, C1 or C4
L1-2 or L1-3	Fault in phase L1, C2 or C3
L2-2 or L2-3	Fault in phase L2, C2 or C3
L3-2 or L3-3	Fault in phase L3, C2 or C3

NOTE: The fault location is active in "Calibrated" state only. The event is registered at the moment of trip command generation.

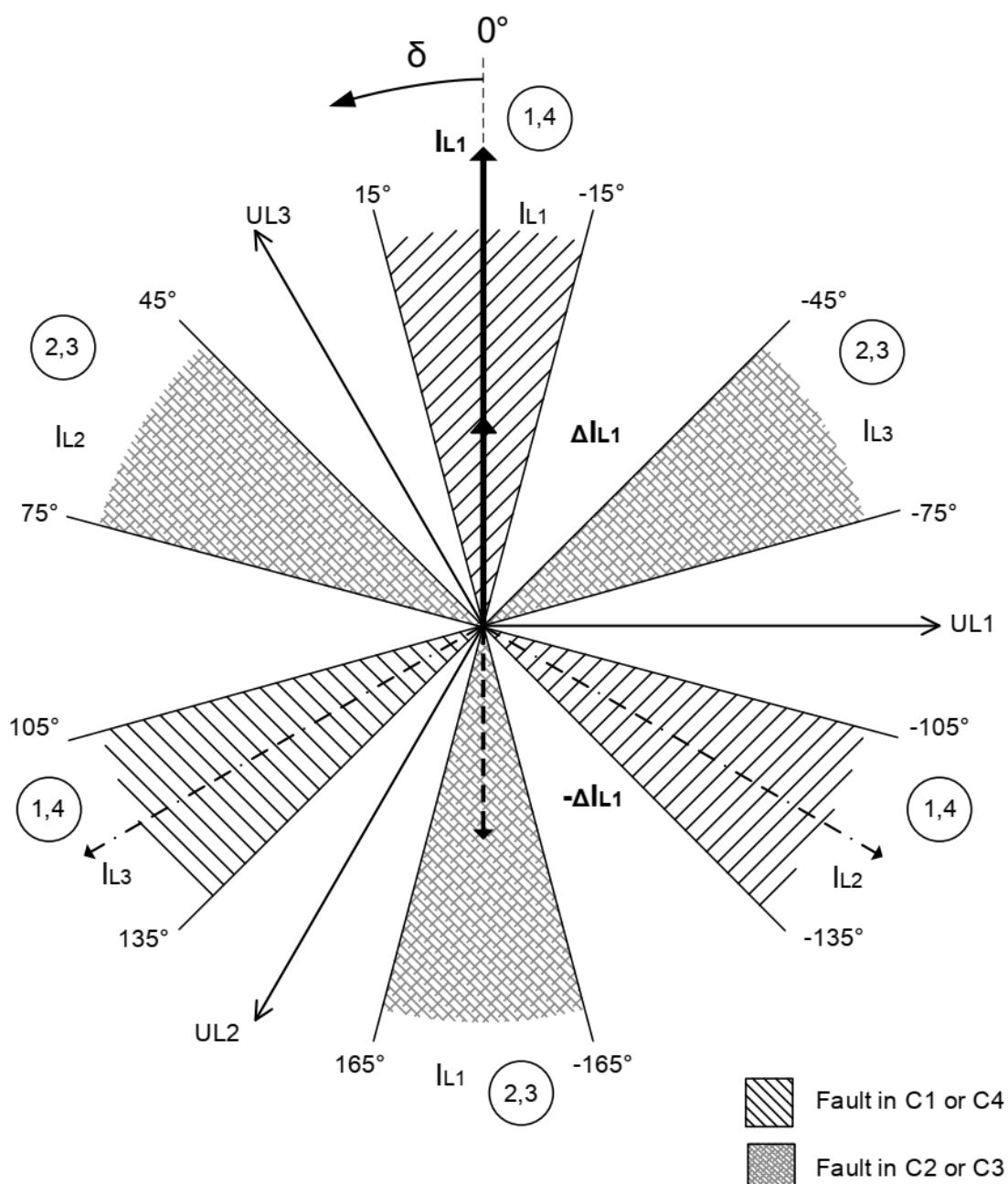
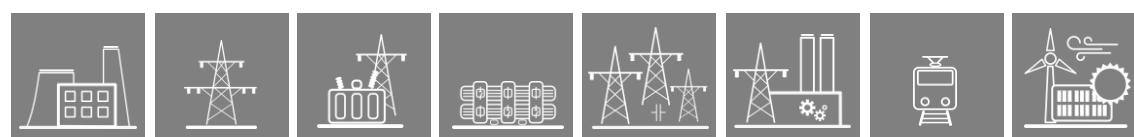
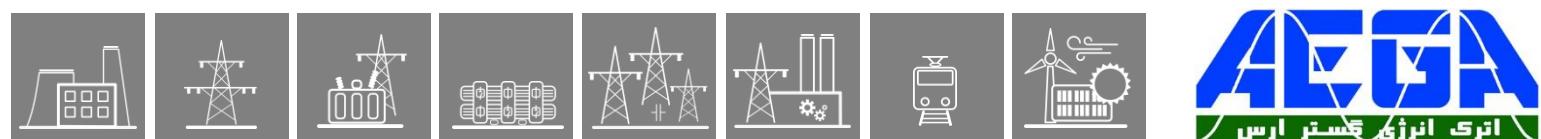




Figure 1-4 Scheme of the fault location

3.1.7.6. Overview

The function block of the capacitor unbalance protection function is shown in Figure 2-1. This block shows all binary input and output status signals that are applicable in the graphic logic editor.

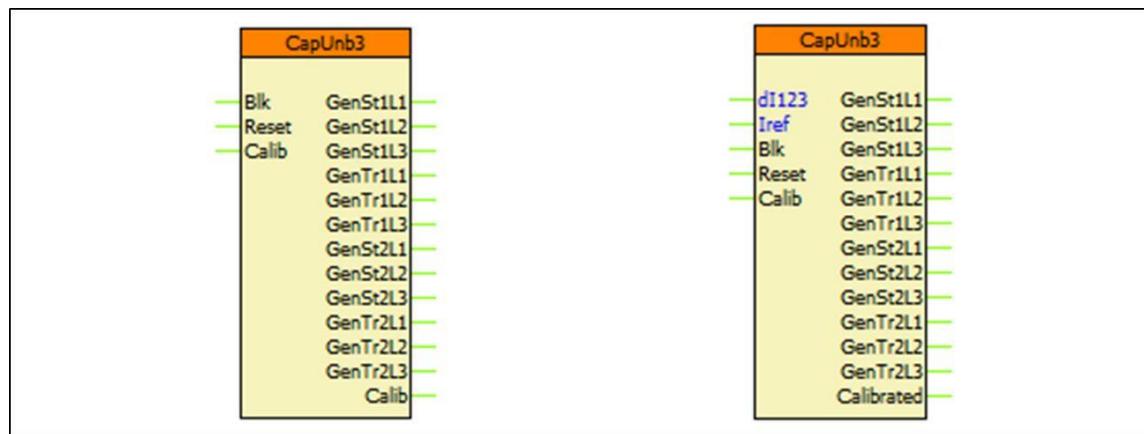
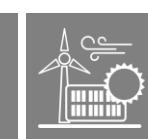


Figure 2-1 The function block of the capacitor unbalance protection function


3.1.7.7. Settings

3.1.7.7.1. Parameters

The parameters are listed as they are seen on the local or remote HMI.

Table 2-1 Parameters of the capacitor unbalance protection function

TITLE	DIM	RANGE	STEP	DEFAULT	EXPLANATION
Internal fuse	-	FALSE, TRUE	-	FALSE	FALSE means no internal fuse TRUE means capacitor units with internal fuse
Rated Current	%	15 - 120	1	100	Nominal current of the capacitor, as percent of the rated input current
Max dI at Calibration	%	5 - 50	1	10	ΔI setting, at calibration the current between the neutral points must be below this level
Operation Stage 1	-	Off, DefinitTime, IEC Inv, IEC VeryInv, IEC ExtInv, IEC LongInv, ANSI Inv, ANSI ModInv, ANSI VeryInv, ANSI ExtInv, ANSI LongInv, ANSI LongVeryInv, ANSI LongExtInv	-	Off	Enabling or disabling the capacitor unbalance protection function
Start Current 1	%	1 - 100	1	10	Current setting for the capacitor unbalance protection function, first stage

Time Multiplier		0.05 – 15.00	0.01	1.00	Time multiplier setting for the inverse type characteristics
Min Time Delay	msec	40 - 60000	1	100	Minimum time delay for the inverse type characteristics (valid, if this characteristic is selected)
Definite Time Delay 1	msec	40 - 60000	1	1000	Definite time delay for the first stage (valid, if this characteristic is selected)
Reset Time	msec	50 - 60000	1	100	Reset time setting, first stage
Operation Stage2	-	Off,On	-	Off	Enabling or disabling the capacitor unbalance protection function
Start Current 2	%	1 - 100	1	10	Current setting for the capacitor unbalance protection function, second stage
Definite Time Delay 2	msec	40 - 60000	1	1000	Definite time delay for the second stage

3.1.7.8. Function I/O

This section describes briefly the analogue and digital inputs and outputs of the function block.

3.1.7.8.1. Analogue inputs

Graphic Analogue inputs (*only from firmware version 2.10.2.3010 and up*)

The sources of the analogue inputs are defined by the user, applying the graphic equation editor (*Logic Editor*). Parts written in **bold** are seen on the left side of the function block in the Logic editor.

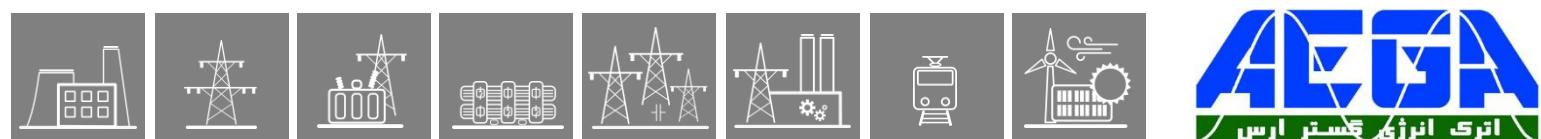
The function uses the following analogue signals as inputs:

Table 2-2 Analogue input signals of the capacitor unbalance protection function

ANALOGUE INPUT SIGNAL	SIGNAL TITLE	EXPLANATION
CapUnB3_dI123_AnIn_	Bridge current group	Input for the differential (unbalance) currents
CapUnB3_Iref_AnIn_	Reference current	Input for the phase current

The applied analogue connectors must be identical to the analogue input type (i.e. voltage to voltage input etc.), Invalid connections are not allowed.

3.1.7.8.2. Analogue outputs


The function has no analogue output signals.

3.1.7.8.3. Binary input signals (graphed output statuses)

The conditions of the inputs are defined by the user, applying the graphic equation editor (logic editor). The part written in **bold** is seen on the function block in the logic editor.

Table 2-3 The binary input status signals of the capacitor unbalance protection function

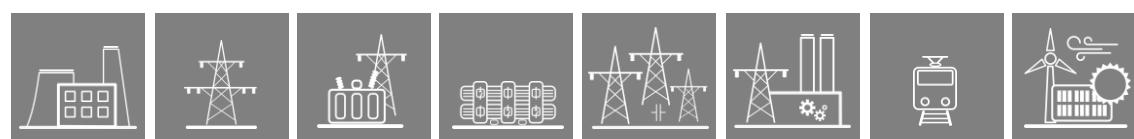
BINARY INPUT SIGNALS	EXPLANATION
CapUnB3_Blk_GrO_	Blocking input
CapUnB3_Reset_GrO_	Resetting the calibrated state
CapUnB3_Calib_GrO_	Binary input for calibration

3.1.7.8.4. Binary output signals (graphed input statuses)

The binary output status signals of the capacitor unbalance protection function. Parts written in **bold** are seen on the function block in the logic editor.

Table 2-4 The binary output status signals of the capacitor unbalance protection function

BINARY OUTPUT SIGNALS	SIGNAL TITLE	EXPLANATION
CapUnB3_GenSt1L1_Grl_	Start Stage1 L1	General Start signal for Stage 1 phase L1
CapUnB3_GenTr1L1_Grl_	Trip Stage1 L1	General Trip command for Stage 1 phase L1
CapUnB3_GenSt2L1_Grl_	Start Stage2 L1	General Start signal for Stage 2 phase L1
CapUnB3_GenTr2L1_Grl_	Trip Stage2 L1	General Trip command for Stage 2 phase L1
CapUnB3_GenSt1L2_Grl_	Start Stage1 L2	General Start signal for Stage 1 phase L2
CapUnB3_GenTr1L2_Grl_	Trip Stage1 L2	General Trip command for Stage 1 phase L2
CapUnB3_GenSt2L2_Grl_	Start Stage2 L2	General Start signal for Stage 2 phase L2
CapUnB3_GenTr2L2_Grl_	Trip Stage2 L2	General Trip command for Stage 2 phase L2
CapUnB3_GenSt1L3_Grl_	Start Stage1 L3	General Start signal for Stage 1 phase L3
CapUnB3_GenTr1L3_Grl_	Trip Stage1 L3	General Trip command for Stage 1 phase L3
CapUnB3_GenSt2L3_Grl_	Start Stage2 L3	General Start signal for Stage 2 phase L3
CapUnB3_GenTr2L3_Grl_	Trip Stage2 L3	General Trip command for Stage 2 phase L3
CapUnB3_Calibrated_Grl_	Calibrated	TRUE, if the function has been calibrated

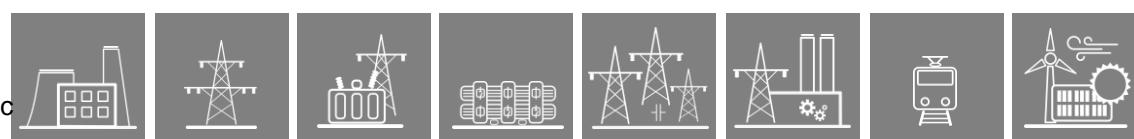


3.1.7.8.5. On-line data

Visible values on the on-line data page:

Table 2-5 The displayed on-line data of the capacitor unbalance protection function

SIGNAL TITLE	DIMENSION	EXPLANATION
dl L1	A	Magnitude of the measured unbalance current in phase L1.
dIL1-IL1 angle	deg	Angle of the differential current related to the L1 phase current.
dl L2	A	Magnitude of the measured unbalance current in phase L2.
dIL2-IL1 angle	deg	Angle of the differential current related to the L1 phase current.
dl L3	A	Magnitude of the measured unbalance current in phase L3.
dIL3-IL1 angle	deg	Angle of the differential current related to the L1 phase current.
Cap. Fault location	N/A, L1-1orL1-4, L1-2orL1-3, L2-1orL2-4, L2-2orL2-3, L3-1orL3-4, L3-2orL3-3	The detected location of the fault given in pairs [phase]-[bankA]or[phase]-[bankB]
Calibrated	Off,On	TRUE, if the function has been calibrated
Start Stage1 L1	Off,On	General Start signal for Stage 1 phase L1
Trip Stage1 L1	Off,On	General Trip command for Stage 1 phase L1
Start Stage1 L2	Off,On	General Start signal for Stage 1 phase L2
Trip Stage1 L2	Off,On	General Trip command for Stage 1 phase L2
Start Stage1 L3	Off,On	General Start signal for Stage 1 phase L3
Trip Stage1 L3	Off,On	General Trip command for Stage 1 phase L3
Start Stage2 L1	Off,On	General Start signal for Stage 2 phase L1
Trip Stage2 L1	Off,On	General Trip command for Stage 2 phase L1
Start Stage2 L2	Off,On	General Start signal for Stage 2 phase L2
Trip Stage2 L2	Off,On	General Trip command for Stage 2 phase L2
Start Stage2 L3	Off,On	General Start signal for Stage 2 phase L3
Trip Stage2 L3	Off,On	General Trip command for Stage 2 phase L3
dl123 Current input assignment		<i>Status of the graphical analogue input (if exists) (Complete if OK, Missing if not connected)</i>
Iref Current input assignment		<i>Status of the graphical analogue input (if exists)</i>



3.1.7.8.6. Events

The following events are generated in the event list, as well as sent to SCADA according to the configuration.

Table 2-6 Events of the capacitor unbalance protection function

EVENT	VALUE	EXPLANATION	IEC61850 DATA ATTRIBUTES (SYSTEM 2.8)	IEC61850 DATA ATTRIBUTES (SYSTEM 2.10)
Start Stage 1	Off,On	General Start signal for Stage 1	F3PTOC1\$ST\$Str	CUNBPTOC3\$ST\$Str
Start Stage 2	Off,On	General Start signal for Stage 2	F3PTOC2\$ST\$Str	CUNBPTOC4\$ST\$Str
Trip Stage 1	Off,On	General Trip signal for Stage 1	F3PTOC1\$ST\$Op	CUNBPTOC3\$ST\$Op
Trip Stage 2	Off,On	General Trip signal for Stage 2	F3PTOC2\$ST\$Op	CUNBPTOC4\$ST\$Op
Start Stage1 L1	Off,On	General Start signal for Stage 1 phase L1	F3PTOC1\$ST\$Str\$phsA	CUNBPTOC3\$ST\$Str\$phsA
Start Stage2 L1	Off,On	General Start signal for Stage 2 phase L1	F3PTOC2\$ST\$Str\$phsA	CUNBPTOC4\$ST\$Str\$phsA
Start Stage1 L2	Off,On	General Start signal for Stage 1 phase L2	F3PTOC1\$ST\$Str\$phsB	CUNBPTOC3\$ST\$Str\$phsB
Start Stage2 L2	Off,On	General Start signal for Stage 2 phase L2	F3PTOC2\$ST\$Str\$phsB	CUNBPTOC4\$ST\$Str\$phsB
Start Stage1 L3	Off,On	General Start signal for Stage 1 phase L3	F3PTOC1\$ST\$Str\$phsC	CUNBPTOC3\$ST\$Str\$phsC
Start Stage2 L3	Off,On	General Start signal for Stage 2 phase L3	F3PTOC2\$ST\$Str\$phsC	CUNBPTOC4\$ST\$Str\$phsC
Cap Fault location	N/A, L1-1orL1-4, L1-2orL1-3, L2-1orL2-4, L2-2orL2-3, L3-1orL3-4, L3-2orL3-3	The detected location of the fault given in pairs: [phase]-[bankA] or [phase]-[bankB]	FLGGIO2\$ST\$IntIn	CAPFLGGIO2\$ST\$IntIn

3.1.7.9. Technical data

Table 2-7 Technical data of the unbalance protection function

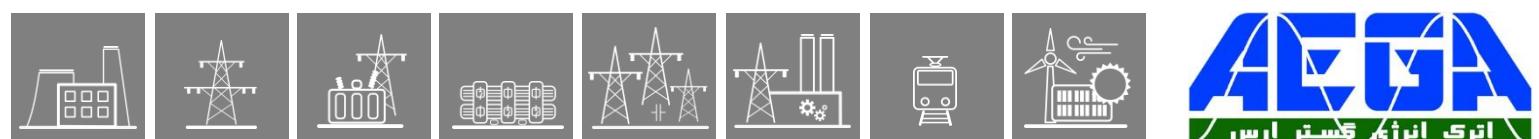
FUNCTION	VALUE	ACCURACY
Pick-up starting accuracy	$20 \leq G_s \leq 1000$	< 5 %
Pickup time	< 40 ms	
Angle accuracy		<1 degree
Reset ratio	0,9	
Reset time Dependent time char. Definite time char.	Approx 60 ms	< 2% or ± 35 ms, whichever is greater
Operate time accuracy		$\pm 5\%$ or ± 15 ms, whichever is greater

3.1.7.9.1. Notes for testing

When calibrating the function, take note of the di measurements that have been nullified: those unbalance values must be taken into consideration when testing the calibrated function.

Normally in the EuroProt+ devices the trip contacts are assigned to the Trip Logic function block, and not to the protection function blocks. Because of this the testing personnel must make sure that the Trip Logic is switched on ('Operation' parameter is set to other than 'Off') before starting the testing, otherwise there will be no physical trip on the relay.

Additional notes for Graphic Analogue inputs (*only from firmware version 2.10.2.3010 and up*):


Starting from the firmware version **2.10.2.3010**, the majority of the function blocks can be updated to be equipped with graphic analogue inputs which **allow the user to assign the functions' analogue inputs by applying the graphic equation editor**.

The analogue connections of these functions can be checked by examining the source that is connected to their inputs (just like examining the source of a logic signal).

These functions must be placed in the Logic Editor and their graphic analogue inputs must be connected to make them operate. If a connection is intact, the online status of the corresponding analogue input will show "Complete". If it is missing, the status will be "Missing" and the function will not operate.

Note that these graphical inputs do not exist in the earlier firmware/function versions! Checking and modifying the analogue assignments in these cases are done by using the EuroCAP Software Configuration menu.

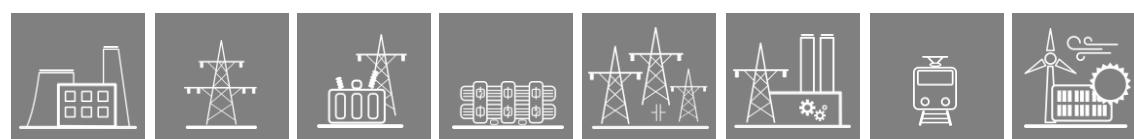
3.1.8. Capacitor unbalance protection for blocks in double star connection

3.1.8.1. Application

The shunt capacitor banks are usually constructed of capacitor units, and the units contain capacitor elements.

There are constructions of the bank where fuses are connected inside a capacitor unit, in series with an element or a group of elements. The fuse is connected in series with the element that the fuse is designed to isolate if the element becomes faulty. After the breakdown of an element, the fuse connected to it will blow and isolate it from the remaining part of the capacitor, which allows the unit to continue in service. The blowing of one or more fuses decreases the capacitance value and additionally it will cause voltage changes within the bank.

If no internal fuses are applied, then the breakdown of an element will short-circuit a "layer" of capacitors. The capacitance value increases and additionally it will also cause voltage changes within the bank.


Each time an internal capacitor element fails, a slight change of voltage distribution and current flow within the capacitor bank is encountered. The magnitude of these changes depends upon the number of failed elements and their location within the bank.

The main purpose of the capacitor unbalance protection is to give an alarm or to disconnect the entire capacitor bank when unbalances across healthy capacitors, adjacent to a failed capacitor, are excessive. Normally not more than 10 % unbalance should be allowed (unbalance limit according to IEC 60871-1 Shunt capacitors for a.c. power systems having a rated voltage above 1000 V – Part 1: General).

If an externally fused capacitor is disconnected by its fuse, a larger voltage and current change is obtained than if single elements are disconnected by internal fuses.

This kind of protection prevents steady-state overvoltage and accelerated aging of the capacitor elements.

Another function of the unbalance protection is to remove the bank from service for a fault not isolated by a fuse or to protect banks that are not internally or externally fused. Unbalance protection is not a replacement for short-circuit protection.

3.1.8.2. Mode of operation

3.1.8.2.1. Construction of the capacitor bank

This version of the capacitor unbalance protection can be applied if the capacitors are arranged in two parallel stars (ungrounded) with a current transformer between the neutrals. The stars do not have to be equal in size. An unbalance in the bank will cause current to flow in the neutral.

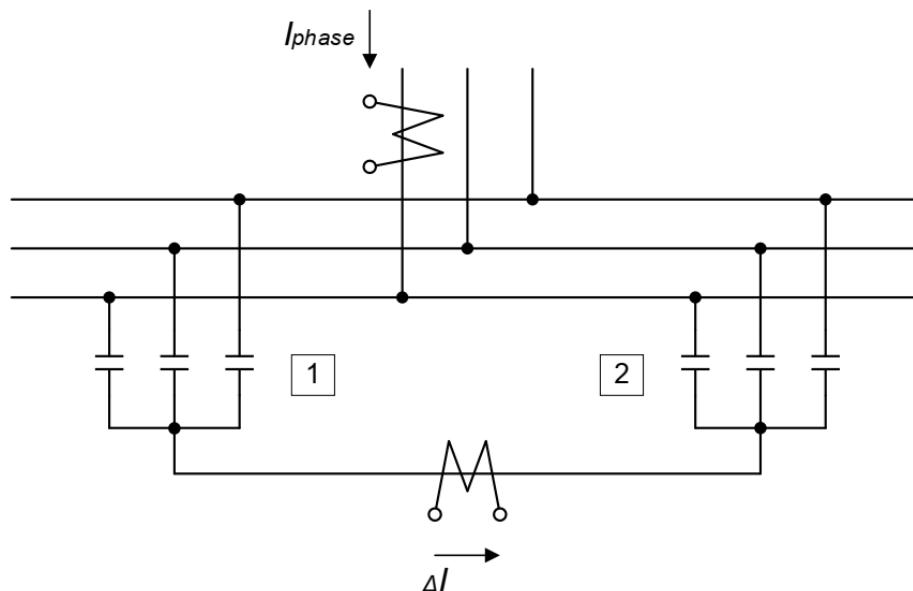
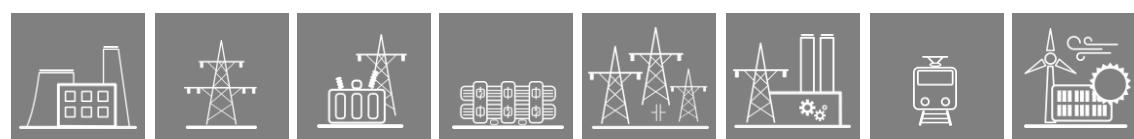


Figure 1-1 Current unbalance between neutrals

The scheme may be used for both internal and external fuses and also in capacitor configurations without fuses. As the sensitivity performance is good, the method is especially useful for internal fuses. The current transformer between the neutral points should be rated for full system voltage.

3.1.8.2.2. Effect of the “natural” asymmetry of the capacitor bank

The related standard permits a considerable amount of asymmetry, which can be up to 10%, consequently in healthy state a relatively high current can flow between the star points. At commissioning the unbalance protection function stores the vector position and the value of the “natural” unbalance current as the reference current ΔI_{ref} and additionally those of one phase current I_{phase_ref}


The reference current is corrected according to the actually measured phase current I_{phase} and the stored I_{phase_ref} reference phase current.

$$\Delta I_{ref_corr} = \Delta I_{ref} \frac{I_{phase}}{I_{phase_ref}}$$

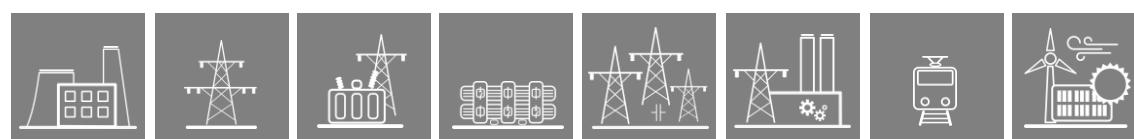
3.1.8.2.3.

where all current values are complex Fourier base harmonic vectors:

ΔI_{ref}	reference current measured between the neutral points at commissioning,
ΔI_{ref_corr}	corrected reference current,
I_{phase}	measured phase current,
I_{phase_ref}	phase current measured at commissioning.

3.1.8.2.4. The energizing quantity (G)

If there are no changes inside the capacitor then no change can be detected in the actually measured unbalance current related to the corrected reference current.


Accordingly, the energizing quantity for evaluation is the difference of the measured current between the neutral points and the corrected reference current:

$$G = dI = \Delta I - \Delta I_{ref_corr}$$

where all current values are complex Fourier base harmonic vectors:

ΔI current measured between the neutral points,
 ΔI_{ref_corr} corrected reference current (see above).

NOTE: This approach using a single phase current supposes that the asymmetry of the network itself does not change, or the changes are cleared with high speed by other protection functions. If considerable steady-state changes in the symmetry of the network are expected, then the measurement and correction based a single phase current is not sufficient. In this case, please consult Protecta Co. Ltd. for solution.

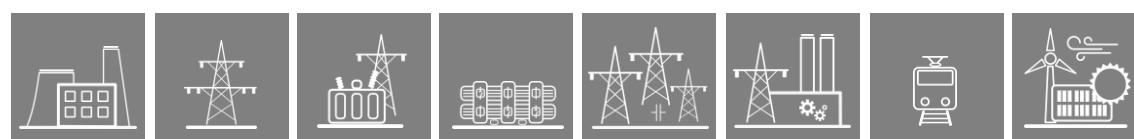
3.1.8.3. Calibration at commissioning

This is the task of the commissioning to store the reference values for the neutral point current ΔI_{ref} , and that of the phase current I_{phase_ref} in the memory.

For this purpose, the function block has a dedicated binary input: *Calibr*. This input must be activated for the calibration. For the physical means for activation see the description of the configuration. This input may be programmed by the user using the graphic logic editor.

The calibration at the moment of activation can be performed only if the conditions for calibration are fulfilled. The conditions for calibration are:

- The phase current must be less than $2*In$ of the current input,
- The phase current must be above 70% of the rated capacitor current,
- The neutral current must be less than the value set by the dedicated parameter.


The calibrated state is indicated by the dedicated binary output of the function

Calibrated. The calibration values are stored in non-volatile memory, separately for each parameter set. The *Reset* binary input resets the calibrated state.

Among the “on-line” information the function continuously displays the magnitude and the angle of the ΔI current measured between the neutral points. At the moment of calibration this vector resets to zero vector. See Figure 1-2. At the same time the “Calibrated” field on the screen displays a check-mark. If however, after calibration any changes happen within the capacitor bank then the displayed values change.

[-] CAPACITOR UNBALANCE	
dI	0.00 A
dI-IL1 angle	0 deg
Cap Fault location	N/A
Calibrated	<input type="checkbox"/>
Start Stage 1	<input type="checkbox"/>
Trip Stage 1	<input type="checkbox"/>
Start Stage 2	<input type="checkbox"/>
Trip Stage 2	<input type="checkbox"/>
dI Current input assignment	Complete
IL1 Current input assignment	Complete

Figure 1-2 On-line display of the “ $dI=\Delta I$ ” neutral current, referred to the reference current

3.1.8.4. Operating characteristics

The capacitor unbalance protection function is configured with two independent stages.

For the first stage definite time characteristic and several types of inverse characteristics can be selected.

The second stage is definite time characteristic.

3.1.8.4.1. Definite time characteristic

$$t(G) = t_{OP} \text{ when } G > G_S$$

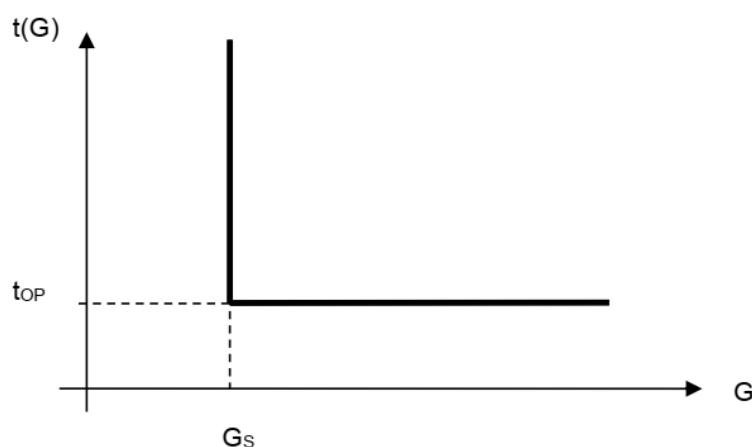
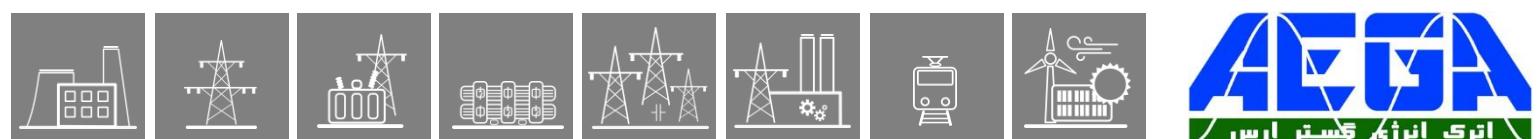



Figure 1-3 Overcurrent definite time characteristic

Where

t_{OP} (seconds)	theoretical operating time if $G > G_S$, fix, according to the preset parameter,
G	measured value of the characteristic quantity, Fourier base harmonic value, (see section 1.2.3),
G_S	preset value of the characteristic quantity.

3.1.8.4.2. Standard inverse time characteristics

Operating characteristics:

$$t(G) = TMS \left[\frac{k}{\left(\frac{G}{G_S} \right)^\alpha - 1} + c \right] \text{ when } G > G_S$$

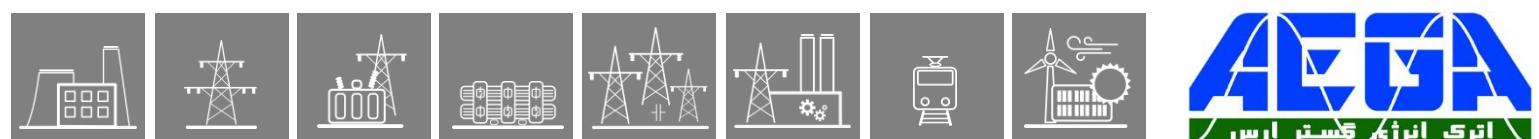
Where

$t(G)$ (seconds)	theoretical operate time with constant value of G ,
k, c	constants characterizing the selected curve (in seconds),
α	constants characterizing the selected curve (no dimension),
G	measured value of the characteristic quantity, Fourier base harmonic value, (see section 1.2.3),
G_S	preset starting value of the characteristic quantity,
TMS	preset time multiplier (no dimension).

Table 1-1 The constants of the standard dependent time characteristics

	IEC REF	TITLE	K_R	c	α
1	A	IEC Inv	0,14	0	0,02
2	B	IEC VeryInv	13,5	0	1
3	C	IEC ExtInv	80	0	2
4		IEC LongInv	120	0	1
5		ANSI Inv	0,0086	0,0185	0,02
6	D	ANSI ModInv	0,0515	0,1140	0,02
7	E	ANSI VeryInv	19,61	0,491	2
8	F	ANSI ExtInv	28,2	0,1217	2
9		ANSI LongInv	0,086	0,185	0,02
10		ANSI LongVeryInv	28,55	0,712	2
11		ANSI LongExtInv	64,07	0,250	2

The end of the effective range of the inverse time characteristics (G_D) is:


$$G_D = 20 * G_S$$

Above this value the theoretical operating time is definite:

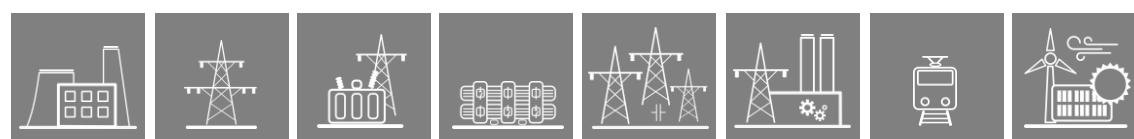
$$t(G) = TMS \left[\frac{k}{\left(\frac{G_D}{G_S} \right)^\alpha - 1} + c \right] \text{ when } G > G_D = 20 * G_S$$

Additionally, a minimum time delay can be defined by parameter setting. This delay is valid if it is longer than $t(G)$, defined by the formula of the operating characteristics above.

The inverse characteristic is valid above $G_T = 1,1 * G_S$. Above this value the function is guaranteed to operate.

Resetting characteristics:

- For IEC type characteristics the resetting is after a fix time delay defined by the parameter CapUnB1_Reset_TPar_ (Reset Time),
- for ANSI types however according to the formula below:


$$t_r(G) = TMS \left[\frac{k_r}{1 - \left(\frac{G}{G_S} \right)^\alpha} \right] \text{ when } G > G_S$$

Where

$t_r(G)$ (seconds)	theoretical reset time with constant value of G ,
k_r	constants characterizing the selected curve (in seconds),
α	constants characterizing the selected curve (no dimension),
G	measured value of the characteristic quantity, Fourier base harmonic of the phase currents,
G_S	preset value of the characteristic quantity (CapUnB1_StCurr1_IPar_, Start current 1),
TMS	preset time multiplier (no dimension).

Table 1-2 The resetting constants of the standard dependent time characteristics

	IEC REF	TITLE	K_r	α
1	A	IEC Inv	Resetting after fix time delay, according to preset parameter CapUnB1_Reset_TPar_ “Reset Time”	
2	B	IEC VeryInv		
3	C	IEC ExtInv		
4		IEC LongInv		
5		ANSI Inv	0,46	2
6	D	ANSI ModInv	4,85	2
7	E	ANSI VeryInv	21,6	2
8	F	ANSI ExtInv	29,1	2
9		ANSI LongInv	4,6	2
10		ANSI LongVeryInv	13,46	2
11		ANSI LongExtInv	30	2

3.1.8.5. Fault location

The vector measurement enables identification of the faulty capacitor unit. For the explanation of the principle of fault location consider the positive direction of the current as indicated in Figure 1-1: the current flows from capacitor unit 1 to capacitor unit 2.

Now consider a fault inside unit 1 in the phase L1, which increases the capacitance value. This event can be modelled by an additional capacitor connected parallel to the capacitor in unit 1 phase L1. It is obvious that this current is in phase of the current of the original phase capacitor "IL1", as it is indicated in Figure 1-3. Consequently the ΔI current measured in the neutral point is in phase with the current of the original phase capacitor. To permit some asymmetry changes in the network and some measuring error, this current is inside the shaded area between -15° and $+15^\circ$. The on-line measurement will display the increased " ΔI " value with " $\Delta I - IL1$ angle" in this range. The related event indicates "L1-1".

Similarly, if an additional capacitor is added to phase L2, then the ΔI current measured in the neutral point is in phase with the current $IL2$. The phase angle related to phase $IL1$ is -120° , and it is in the range of -105° and -135° . The related event indicates "L2-1".

If for example the added capacitor is in unit 2 in phase L2 then the vector is in the range of $+45^\circ$ and $+75^\circ$. The related event indicates "L2-2".

If the capacitor elements are not fused, then the breakdown of a capacitor element will short-circuit a "layer" of capacitors. The resultant capacitance, consequently, the capacitive current increases, as in the explanation above.

If however, the capacitor elements are individually fused then the breakdown of a capacitor element is disconnected from the "layer" of capacitors. The resultant capacitance decreases, and the result is opposite to the explanation in Figure 1-3.

For correct evaluation the information is needed: whether internal fuses are applied or not. This is to be set by the Boolean parameter "Internal fuse".

The event list related to the capacitor faults can contain the following messages:

Table 1-3 Capacitor fault location

MESSAGE	EXPLANATION
L1-1	Fault in phase L1, unit 1
L2-1	Fault in phase L2, unit 1
L3-1	Fault in phase L3, unit 1
L1-2	Fault in phase L1, unit 2
L2-2	Fault in phase L2, unit 2
L3-2	Fault in phase L3, unit 2

NOTE: The fault location is active in "Calibrated" state only. The event is registered at the moment of trip command generation.

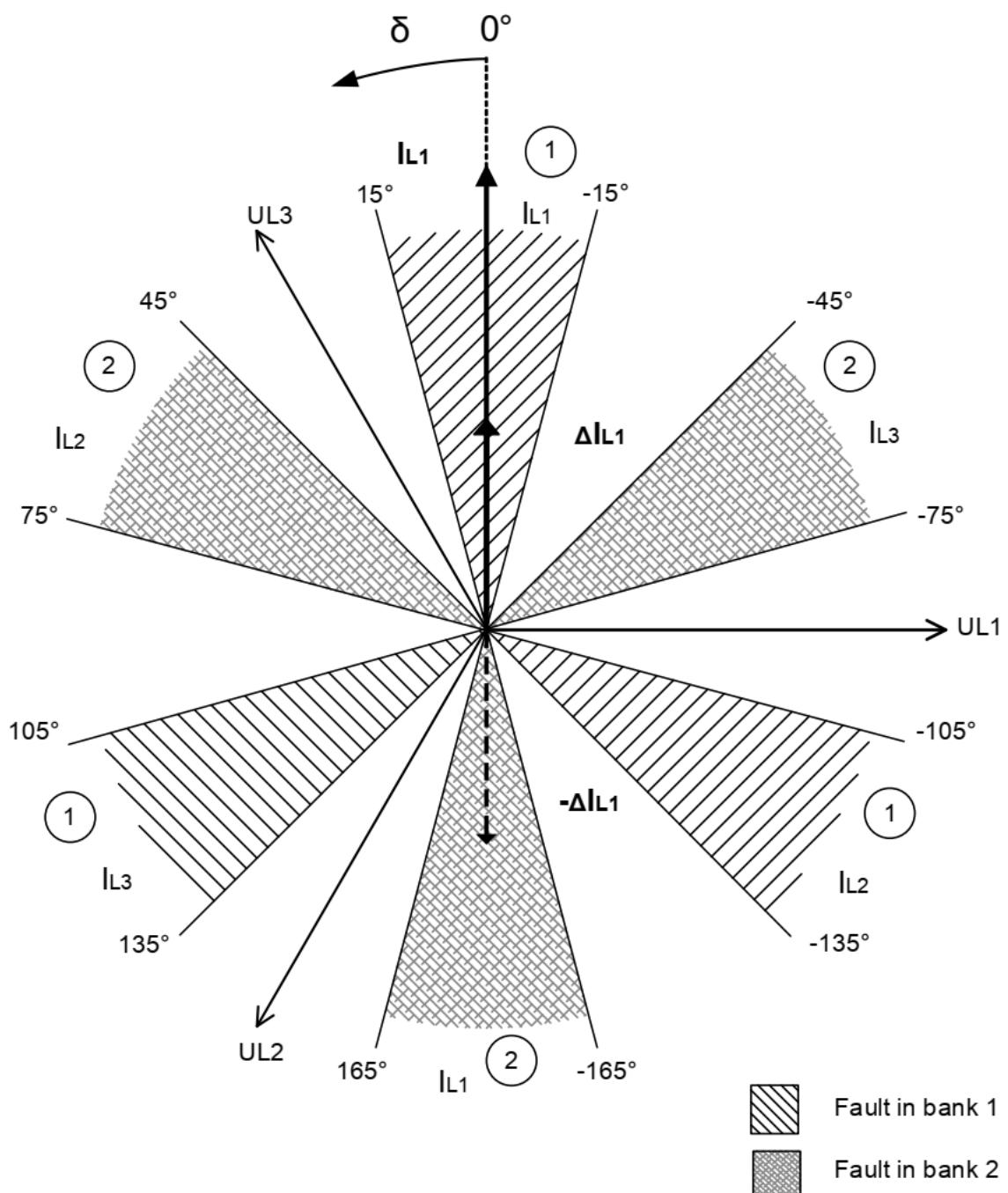
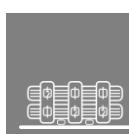
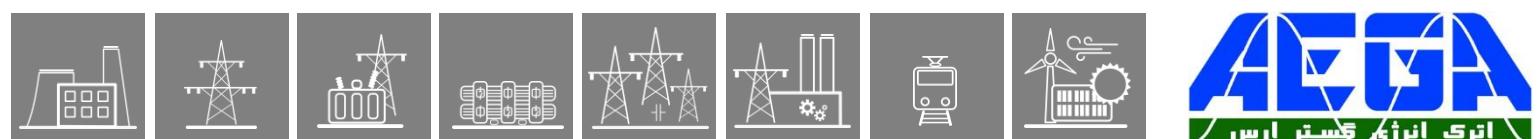



Figure 1-4 Scheme of the fault location

3.1.8.6. Overview

The function block of the capacitor unbalance protection function is shown in Figure 2-1. This block shows all binary input and output status signals that are applicable in the graphic logic editor.

Figure 2-1 The function block of the capacitor unbalance protection function


3.1.8.7. Settings

3.1.8.7.1. Parameters

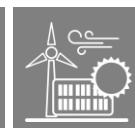

The parameters are listed as they are seen on the local or remote HMI.

Table 2-1 Parameters of the capacitor unbalance protection function

TITLE	DIM	RANGE	STEP	DEFAULT	EXPLANATION
Internal fuse	-	FALSE, TRUE	-	FALSE	FALSE means no internal fuse TRUE means capacitor units with internal fuse
Rated Current	%	15-120	1	100	Nominal current of the capacitor, as percent of the rated input current
Max dI at Calibration	%	5 - 50	1	10	ΔI setting, at calibration the current between the neutral points must be below this level
Operation Stage 1	-	Off, DefinitTime, IEC Inv, IEC VeryInv, IEC ExtInv, IEC LongInv, ANSI Inv, ANSI ModInv, ANSI VeryInv, ANSI ExtInv, ANSI LongInv, ANSI LongVeryInv, ANSI LongExtInv	-	Off	Enabling or disabling the capacitor unbalance protection function
Start Current 1	%	1 - 100	1	10	Current setting for the capacitor unbalance protection function, first stage
Time Multiplier		0.05 – 15.00	0.01	1.00	Time multiplier setting for the inverse type characteristics, first stage
Min Time Delay	msec	40 – 60000	1	100	Minimum time delay for the inverse type characteristics, first stage (valid, if this characteristic is selected)

Definite Time Delay 1	msec	40 – 60000	1	1000	Definite time delay for the first stage
Reset Time	msec	50 – 60000	1	100	Reset time setting, first stage
Operation Stage 2	-	Off, On	-	Off	Enabling or disabling the capacitor unbalance protection function
Start Current 2	%	1 -100	1	10	Current setting for the capacitor unbalance protection function, second stage
Definite Time Delay 2	msec	40 - 60000	1	1000	Definite time delay for the second stage

3.1.8.8. Function I/O

This section describes briefly the analogue and digital inputs and outputs of the function block.

3.1.8.8.1. Analogue inputs

Graphic Analogue inputs (only from firmware version 2.10.2.3010 and up)

The sources of the analogue inputs are defined by the user, applying the graphic equation editor (*Logic Editor*). Parts written in **bold** are seen on the left side of the function block in the Logic editor.

The function uses the following analogue signals as inputs:

Table 2-2 Analogue input signals of the capacitor unbalance protection function

ANALOGUE INPUT SIGNAL	SIGNAL TITLE	EXPLANATION
CapUnb1_dI_AnIn_	Neutral point current	Input for the differential (unbalance) current
CapUnb1_lI1_AnIn_	lI1 current or group	Input for the phase current

The applied analogue connectors must be identical to the analogue input type (i.e. voltage to voltage input etc.), Invalid connections are not allowed.

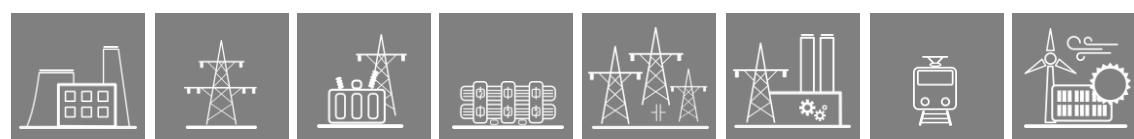
3.1.8.8.2. Analogue outputs (measurements)

The function has no analogue output signals.

3.1.8.8.3. Binary input signals (graphed output statuses)

The conditions of the inputs are defined by the user, applying the graphic equation editor (logic editor). The part written in **bold** is seen on the function block in the logic editor.

Table 2-3 The binary input status signals of the capacitor unbalance protection function


BINARY INPUT SIGNALS	EXPLANATION
CapUnB1_Blk_GrO_	Blocking input
CapUnB1_Reset_GrO_	Resetting the calibrated state
CapUnB1_Calib_GrO_	Binary input for calibration

3.1.8.8.4. Binary output signals (graphed input statuses)

The binary output status signals of the capacitor unbalance protection function. Parts written in **bold** are seen on the function block in the logic editor.

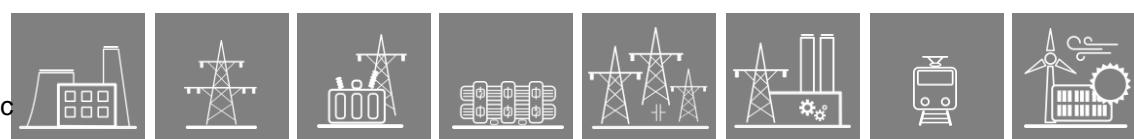
Table 2-4 The binary output status signals of the capacitor unbalance protection function

BINARY OUTPUT SIGNALS	SIGNAL TITLE	EXPLANATION
CapUnB1_GenSt1_Grl_	Start Stage 1	General Start signal for Stage 1
CapUnB1_GenTr1_Grl_	Trip Stage 1	General Trip command for Stage 1
CapUnB1_GenSt2_Grl_	Start Stage 2	General Start signal for Stage 2
CapUnB1_GenTr2_Grl_	Trip Stage 2	General Trip command for Stage 2
CapUnB1_Calib_Grl_	Calibrated	TRUE, if the function has been calibrated

3.1.8.8.5. On-line data

Visible values on the on-line data page:

Table 2-5 The displayed on-line data of the capacitor unbalance protection function


SIGNAL TITLE	DIMENSION	EXPLANATION
dl	A	Magnitude of the measured differential current between the neutral points.
dl-IL1 angle	deg	Angle of the differential current related to the phase current.
Cap Fault location	N/A, L1-1, L3-2, L2-1, L1-2, L3-1, L2-2	The detected location of the fault: [phase]-[bank]
Calibrated	Off,On	TRUE, if the function has been calibrated
Start Stage 1	Off,On	General Start signal for Stage 1
Trip Stage 1	Off,On	General Trip command for Stage 1
Start Stage 2	Off,On	General Start signal for Stage 2
Trip Stage 2	Off,On	General Trip command for Stage 2
dl Current input assignment		Status of the graphical analogue input (if exists) (Complete if OK, Missing if not connected)
IL1 Current input assignment		Status of the graphical analogue input (if exists)

3.1.8.8.6. Events

The following events are generated in the event list, as well as sent to SCADA according to the configuration.

Table 2-6 Events of the capacitor unbalance protection function

EVENT	VALUE	EXPLANATION	IEC61850 DATA ATTRIBUTES (SYSTEM 2.8)	IEC61850 DATA ATTRIBUTES (SYSTEM 2.10)
Start Stage1	Off,On	General Start signal for stage 1	F1PTOC1\$ST\$Str	CUNBPTOC1\$ST\$Str
Trip Stage1	Off,On	General Trip command for stage 1	F1PTOC1\$ST\$Op	CUNBPTOC1\$ST\$Op
Start Stage2	Off,On	General Start signal for stage 2	F1PTOC2\$ST\$Str	CUNBPTOC2\$ST\$Str
Trip Stage2	Off,On	General Trip command for stage 2	F1PTOC2\$ST\$Op	CUNBPTOC2\$ST\$Op
Cap Fault location	N/A, L1-1, L3-2, L2-1, L1-2, L3-1, L2-2	The detected location of the fault: [phase]-[bank]	FLGGIO1\$ST\$IntIn	CAPFLGGIO1\$ST\$IntIn

3.1.8.9. Technical data

Table 2-7 Technical data of the unbalance protection function

FUNCTION	VALUE	ACCURACY
Pick-up starting accuracy	$20 \leq G_s \leq 1000$	< 5 %
Pickup time	< 40 ms	
Angle accuracy		<1 degree*
Reset ratio	0,9	
Reset time Dependent time char. Definite time char.	Approx 60 ms	< 2% or ± 35 ms, whichever is greater
Operate time accuracy		$\pm 5\%$ or ± 15 ms, whichever is greater

* Valid if the negative sequence component of the network voltage is < 5%

3.1.8.9.1. Notes for testing

When calibrating the function, take note of the dl measurement that has been nullified: that unbalance must be taken into consideration when testing the calibrated function.

Normally in the EuroProt+ devices the trip contacts are assigned to the Trip Logic function block, and not to the protection function blocks. Because of this the testing personnel must make sure that the Trip Logic is switched on ('Operation' parameter is set to other than 'Off') before starting the testing, otherwise there will be no physical trip on the relay.

Additional notes for Graphic Analogue inputs (only from firmware version 2.10.2.3010 and up):

Starting from the firmware version **2.10.2.3010**, the majority of the function blocks can be updated to be equipped with graphic analogue inputs which **allow the user to assign the functions' analogue inputs by applying the graphic equation editor**.

The analogue connections of these functions can be checked by examining the source that is connected to their inputs (just like examining the source of a logic signal).

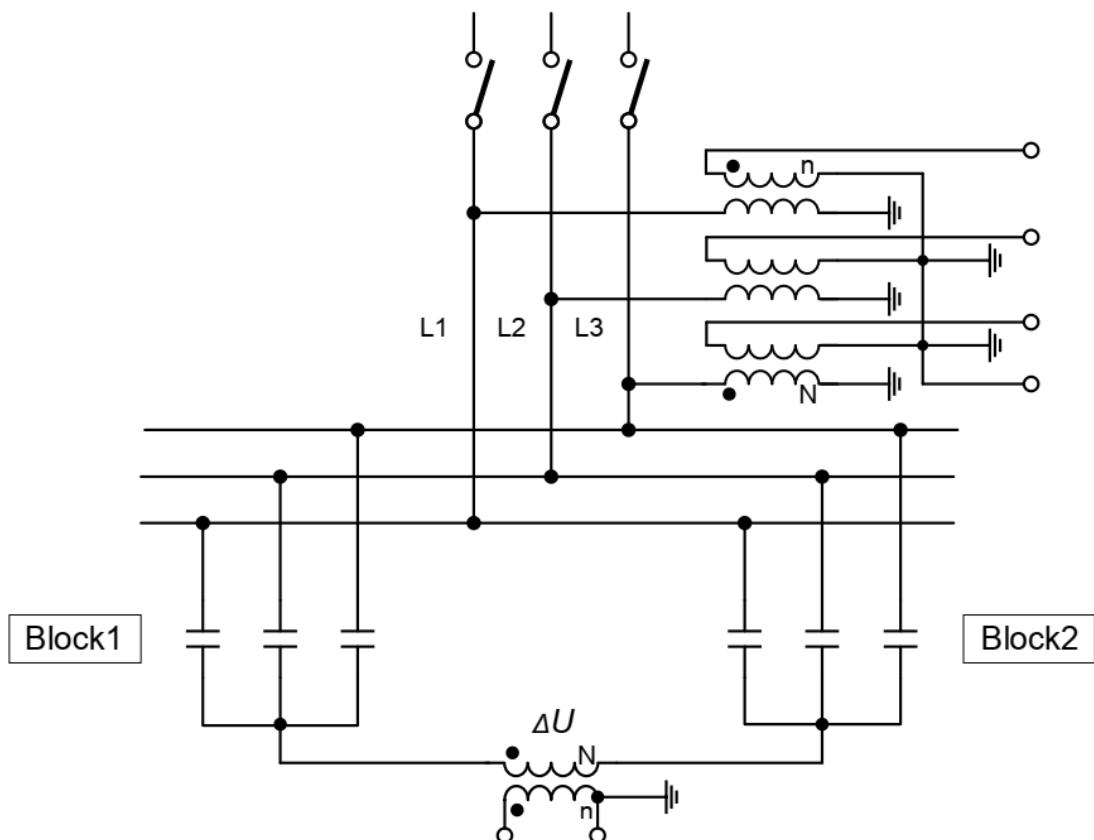
These functions must be placed in the Logic Editor and their graphic analogue inputs must be connected to make them operate. If a connection is intact, the online status of the corresponding analogue input will show "Complete". If it is missing, the status will be "Missing" and the function will not operate.

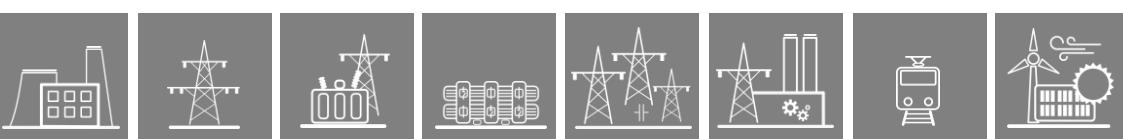
Note that these graphical inputs do not exist in the earlier firmware/function versions (2.8.x.xxxx)! Checking and modifying the analogue assignments in these cases are done by using the EuroCAP Software Configuration menu.

3.1.9. Capacitor unbalance protection for blocks in double star connection (Version "U")

3.1.9.1. Application

This version of the capacitor unbalance functions can be applied to protect capacitors connected in two parallel, star connected capacitor blocks, where a voltage transformer is installed between the star points (see the figure below). The two blocks need not be identical. Any unbalance within the blocks can result measurable voltage difference between the star points.




Figure 1-1 Star connected capacitors with voltage transformer between the star points

The shunt capacitor banks are usually constructed of capacitor units, and the units contain capacitor elements.

There are constructions of the bank where fuses are connected inside a capacitor unit, in series with an element or a group of elements. The fuse is connected in series with the element that the fuse is designed to isolate if the element becomes faulty. After the breakdown of an element, the fuse connected to it will melt down and isolate it from the remaining part of the capacitor, which allows the unit to remain in service. The blowing of one or more fuses decreases the capacitance value and additionally it will cause voltage changes within the bank.

If no internal fuses are applied, then the breakdown of an element will short-circuit a "layer" of capacitors. The capacitance value increases and additionally it will also cause voltage changes within the bank.

Each time an internal capacitor element fails, a slight change of voltage distribution and current flow within the capacitor bank is encountered. The magnitude of these changes depends upon the number of failed elements and their location within the bank.

The main purpose of the capacitor unbalance protection is to give an alarm or to disconnect the entire capacitor bank when unbalances across healthy capacitors, adjacent to a failed capacitor, are excessive. Normally not more than 10 % unbalance should be allowed (unbalance limit according to IEC 60871-1:2006 Shunt capacitors for a.c. power systems having a rated voltage above 1000 V – Part 1: General).

If an externally fused capacitor is disconnected by its fuse, a larger voltage and current change is obtained than if single elements are disconnected by internal fuses.

This kind of protection prevents steady-state overvoltage and accelerated aging of the capacitor elements.

Another function of the unbalance protection is to remove the bank from service for a fault not isolated by a fuse or to protect banks that are not internally or externally fused.

This capacitor protection function does not replace short-circuit protection and earth-fault protection.

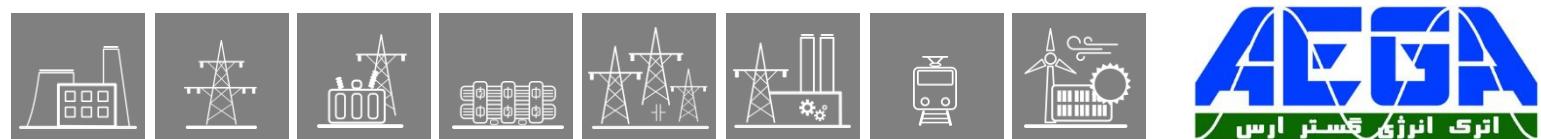
The scheme may be used for both internal and external fuses and also in capacitor configurations without fuses. As the sensitivity performance is good, the method is especially useful for internal fuses.

This protection function is based on the base Fourier components of the voltages.

In all three phases of the capacitor blocks a voltage transformer is installed to the connection points, which is switched together with the blocks. Between the star points, a voltage transformer is connected, with the rated voltage matching the rated voltage of the network. The voltage ratio of the voltage transformers at the connection points and that between the star points should be the same. The voltage ratio at the connection point is usually

$$U_{line-to-line}/\sqrt{3}/100/\sqrt{3}.$$

and that between the star points is


$$U_{line-to-line}/\sqrt{3}/100/\sqrt{3}, \dots \text{or} \dots U_{line-to-line}/100$$

The rated voltage is always $U_{line-to-line}/\sqrt{3}$ Volt. The setting value of the “start” parameter is related to this value. NOTE: This voltage is connected to Channel 4 of the voltage input module. The parameter “Connection U4” of this module should always be selected to “Ph-N”.

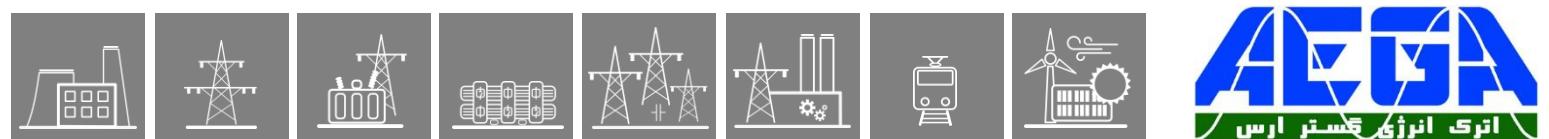
The related standard permits relatively large asymmetry, reaching up to 10%. Accordingly, there can be a relatively large voltage difference between the star points even in healthy state. At commissioning, the capacitor protection function stores the value of ΔU voltage difference caused by the “natural” asymmetry.

Based on the secondary voltage of the voltage transformers installed to the connection points of the capacitor bank, the function calculates two perpendicular voltages. One of them is the line-to-line voltage $UL23$. The other one is the value between the midpoint of the $UL23$ line-to-line voltage and the $UL1$ line-to-ground, the value of which is magnified to the value of the line-to-line voltage. This is denoted as URK . In case of symmetry, the direction of the URK voltage coincides with the $UL1$ line-to-ground voltage. These two voltages serve the compensation of the ΔU voltage, due to the natural asymmetry.

If the voltage transformer would be connected to the busbar, and at disconnection of the capacitor bank the ΔU voltage would decrease to zero, then the consequence would be trip command and error in the fault location.

During the commissioning, the protection function needs calibration to compensate the natural ΔU voltage difference between the star points with the appropriate negative combination of the voltages UL23 and URK. This is the aim of application of the dedicated binary input *Calibr.* (*CapUnBU_Calibr_GrO*) of the function. For calibration, this input needs an active signal. The calibration of the function is performed only if the value of ΔU is below the setting value (*Max dU calibr.*), and the value of the UL23 line-to-line voltage is above 70%. The conditions for the binary input are programmed by the user, using the graphic logic editor.

This compensation is effective not in case of symmetrical voltages only but if the three phase voltages are asymmetrical, because if there is no change within the capacitors, the changes of the compensating voltage follow the changes of ΔU .


The compensation value defined in the procedure above can be deleted applying an active value to the *Reset* (*CapUnBU_Reset_GrO*) binary input. The conditions for the input are also defined by the user, using the graphic logic editor.

In some cases, the capacitor blocks can be divided parts by disconnectors, changing the available reactive power. For different power, different parameter settings may be needed. This can be solved by applying several parameter sets. Changing the power the natural asymmetry may be different, accordingly separate calibration is needed. The protection function block stores the calibrating values jointly to the parameter values. Accordingly at parameter set changes the correct values are considered. The displayed calibrated state is valid in the actual displayed parameter set. Accordingly, the calibration procedure needs to be repeated for each parameter sets.

Among the “on-line” information, the function continuously displays the magnitude and the angle of the ΔU voltage measured between the neutral points. At the moment of calibration this vector resets to zero vector. (In the Figure below $dU=\Delta U$). At the same time the “Calibrated” field on the screen displays a check-mark, and the „Calibrated” (*CapUnBU_Calibr_Grl*) binary output of the function block gets active too. If, however, after calibration any changes happen within the capacitor bank then the displayed dU value changes from 0 to the measured value.

[-] CAPACITOR UNBALANCE U	
dU	34 %
dU-URK angle	6 deg
Cap. Fault location	N/A
Calibrated	<input type="checkbox"/>
Start Stage1	<input type="checkbox"/>
Trip Stage1	<input type="checkbox"/>
Start Stage1	<input type="checkbox"/>
Trip Stage2	<input type="checkbox"/>
dU Voltage input assignment	Complete
Voltage input assignment	Complete

Figure 1-2 On-line information of the function before calibration

[-] CAPACITOR UNBALANCE U

dU	<input type="text" value="0"/>	%/oo
dU-URK angle	<input type="text" value="0"/>	deg
Cap. Fault location	<input type="text" value="N/A"/>	
Calibrated	<input checked="" type="checkbox"/>	
Start Stage1	<input type="checkbox"/>	
Trip Stage1	<input type="checkbox"/>	
Start Stage1	<input type="checkbox"/>	
Trip Stage2	<input type="checkbox"/>	
dU Voltage input assignment	<input type="text" value="Complete"/>	
Voltage input assignment	<input type="text" value="Complete"/>	

Figure 1-3 On-line information of the function after calibration

The capacitor unbalance protection function is configured with two independent definite time stages.

3.1.9.2. Fault location

The vector measurement enables identification of the faulty capacitor unit. For the explanation of the principle of fault location consider the positive direction of the UL_1 and the ΔU voltages and the identification of the capacitor blocks (Block 1 and Block 2) as indicated on Figure 1-1. For the correct operation, the connectors of the voltage transformers identified with dots should be connected to the pins 1-3-5 of the voltage input modules, the connectors marked with „n” connect to the pins 2-4-6. The connector indicated with a dot of the voltage transformer between the star points is to be connected to pin 7, and that indicated with „n” to pin 8. The parameter setting for the VT4 module should be as follows:

U1-3 connection: „Ph-N-Isolated”,
 U4 connection: „Ph-N”,
 U1-3 direction: „Normal”,
 U4 direction: „Normal”.

If there are no fuses installed in the capacitor elements, then a fault shunts one layer of the capacitors. Accordingly, the resulting capacitance and the measured voltage decreases.

Now consider a fault inside unit 1 in the phase L_1 , which increases the capacitance value. This event can be modelled by an additional capacitor connected parallel to the capacitor in unit 1 phase L_1 . It is obvious that the star point moves toward the direction of UL_1 , which means that the ΔU voltage difference points to $UL_1 \rightarrow URK$. Supposing slight asymmetry and small measuring error, the vector of ΔU is inside the shaded area between -15° and $+15^\circ$ (See Figure below). The on-line measurement will display the increased “ dU ” value with “ $dU-URK$ angle” in this range. The related event indicates “L1-1” fault.

Similarly, if an additional capacitor is added to phase L_2 , then the ΔU voltage measured in the neutral point is in phase with the voltage UL_2 . The phase angle related to $UL_1 \rightarrow URK$ is -120° , and it is in the range of -105° and -135° . The related event indicates “L2-1” fault.

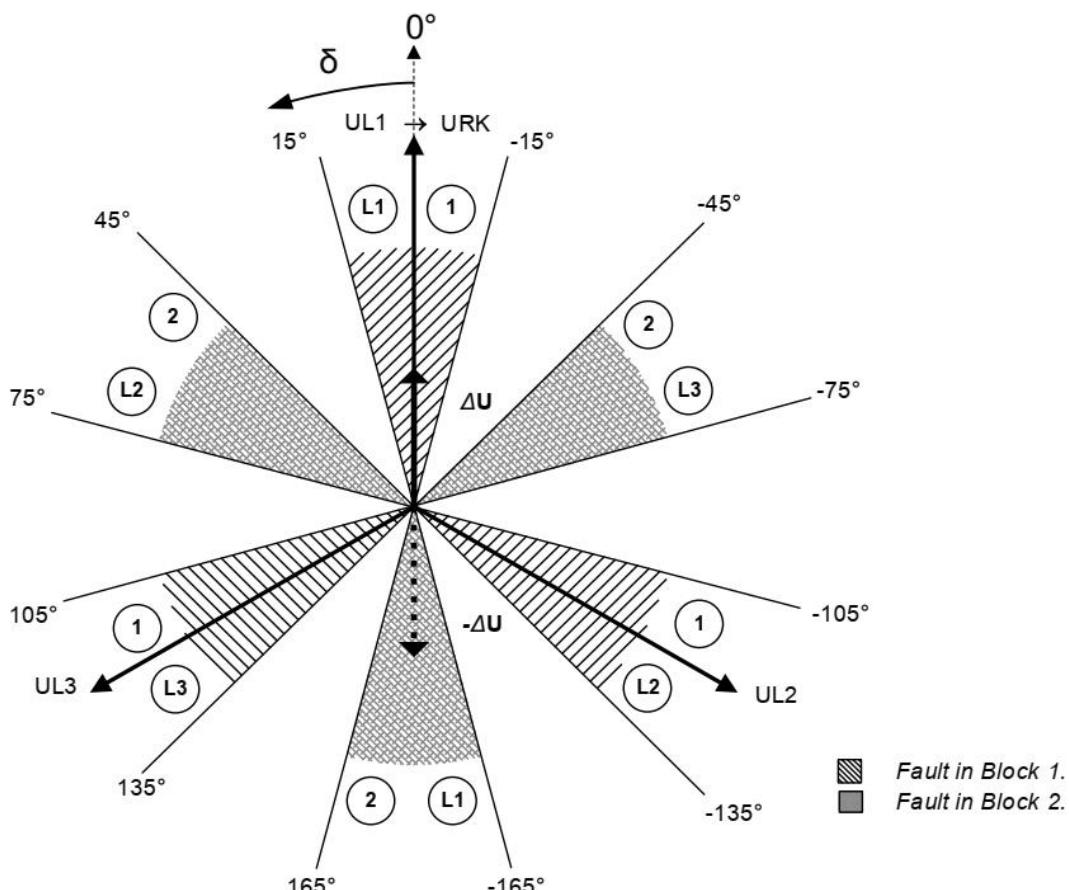
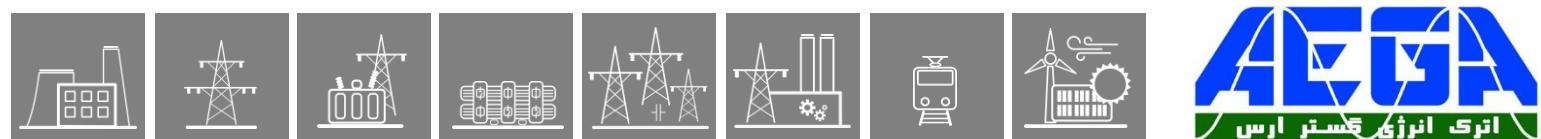
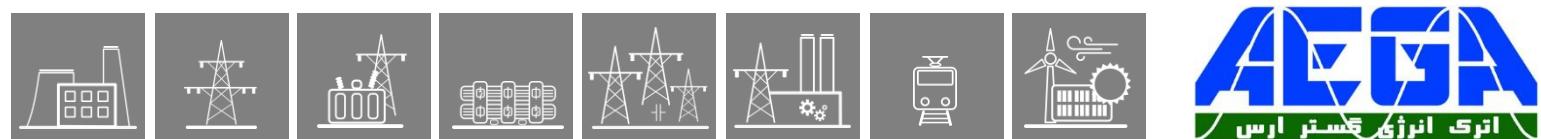



Figure 1-4 Fault location example, L1-1 fault

If for example the added capacitor is in unit 2 in phase L2 then the vector is in the range of $+45^\circ$ and $+75^\circ$. The related event indicates "L2-2" fault.

If however, the capacitor elements are individually fused then the breakdown of a capacitor element is disconnected from the "layer" of capacitors. The resultant capacitance decreases, and the result is opposite $-\Delta U$ voltage. For correct evaluation the information is needed: whether internal fuses are applied or not. This is to be set by the Boolean parameter "*Internal fuse*".

The event list related to the capacitor faults can contain the following messages:


Table 1-1 Fault messages

MESSAGE	EXPLANATION
L1-1	Fault in phase L1, unit 1
L2-1	Fault in phase L2, unit 1
L3-1	Fault in phase L3, unit 1
L1-2	Fault in phase L1, unit 2
L2-2	Fault in phase L2, unit 2
L3-2	Fault in phase L3, unit 2

NOTE: The fault location is active in "*Calibrated*" state only. The event is logged at the moment of trip command generation.

The fault location is performed 80 msec after the start state of any of the stages. This eliminates the disturbing effects of the transients. This is the moment of displaying the message in the "online" window, and the event recorder logs the trip command generation.

The function can be disabled applying an active signal to the *Blk* (*CapUnBU_Blk_GrO_*) binary input of the function block.

3.1.9.3. Overview

The function block of the capacitor unbalance protection function is shown below. This block shows all binary input and output status signals that are applicable in the graphic logic editor.

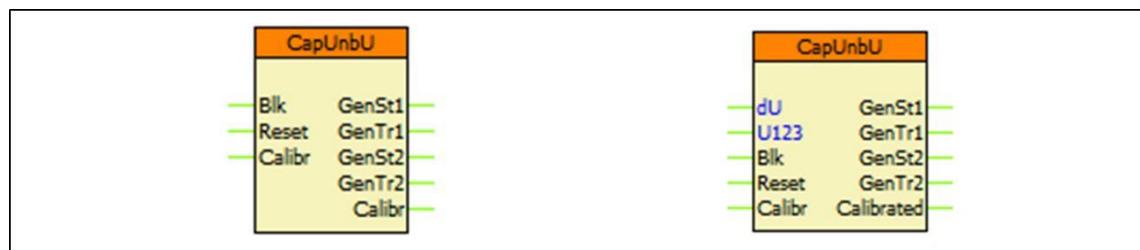


Figure 2-1 The function block of the capacitor unbalance protection function

3.1.9.4. Settings

3.1.9.4.1. Parameters

The parameters are listed as they are seen on the local or remote HMI.

Table 2-1 Parameters of the capacitor unbalance protection function

TITLE	DIM	RANGE	STEP	DEFAULT	EXPLANATION
Internal fuse	-	FALSE, TRUE	-	FALSE	FALSE means no internal fuse TRUE means capacitor units with internal fuse
Max dU at Calibration	%	2 - 20	1	10	ΔU setting, at calibration the voltage between the neutral points must be below this level
Operation Stage 1	-	Off, On	-	Off	Enabling or disabling the first stage of the function
Start Voltage 1	%	5 - 100	1	10	Voltage setting for the capacitor unbalance protection function, first stage
Definite Time Delay 1	msec	40 - 60000	1	1000	Definite time delay for the first stage
Operation Stage 2	-	Off, On	-	Off	Enabling or disabling the second stage of the function
Start Voltage 2	%	5 - 100	1	10	Voltage setting for the capacitor unbalance protection function, second stage
Definite Time Delay 2	msec	40 - 60000	1	1000	Definite time delay for the second stage

NOTE: % and % are related to $U_{\text{line-to-line}} / \sqrt{3}$ Volt.

3.1.9.5. Function I/O

This section describes briefly the analogue and digital inputs and outputs of the function block.

3.1.9.5.1. Analogue inputs

Graphic Analogue inputs (*only from firmware version 2.10.2.3010 and up*)

The sources of the analogue inputs are defined by the user, applying the graphic equation editor (*Logic Editor*). Parts written in **bold** are seen on the left side of the function block in the Logic editor.

The function uses the following analogue signals as inputs:

Table 2-2 Analogue input signals of the capacitor unbalance protection function

ANALOGUE INPUT SIGNAL	SIGNAL TITLE	EXPLANATION
CapUnBU_dU_AnIn_	Starpoint delta voltage	Input for the voltage between the two starpoints
CapUnBU_U123_AnIn_	3phase voltage	Analogue input for the three phase voltages

The applied analogue connectors must be identical to the analogue input type (i.e. voltage to voltage input etc.), Invalid connections are not allowed.

3.1.9.5.2. Analogue outputs

The function has no analogue output signals.

3.1.9.5.3. Binary input signals (graphed output statuses)

The conditions of the inputs are defined by the user, applying the graphic equation editor (logic editor). The part written in **bold** is seen on the function block in the logic editor.

Table 2-3 Binary input status signals of the capacitor unbalance protection function

BINARY INPUT SIGNALS	EXPLANATION
CapUnBU_Blk_GrO_	Blocking input
CapUnBU_Reset_GrO_	Resetting the calibrated state
CapUnBU_Calibr_GrO_	Binary input for calibration

3.1.9.5.4. Binary output signals (graphed input statuses)

The binary output status signals of the capacitor unbalance protection function. Parts written in **bold** are seen on the function block in the logic editor.

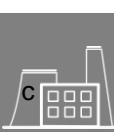
Table 2-4 Binary output status signals of the capacitor unbalance protection function

BINARY OUTPUT SIGNALS	SIGNAL TITLE	EXPLANATION
CapUnBU_GenSt1_Grl_	Start Stage1	General Start signal for stage 1
CapUnBU_GenTr1_Grl_	Trip Stage1	General Trip command for stage 1
CapUnBU_GenSt2_Grl_	Start Stage2	General Start signal for stage 2
CapUnBU_GenTr2_Grl_	Trip Stage2	General Trip command for stage 2
CapUnBU_Calibrated_Grl_	Calibrated	True, if the function has been calibrated

3.1.9.5.5. On-line data

Visible values on the on-line data page:

Table 2-5 The displayed on-line data of the capacitor unbalance protection function


SIGNAL TITLE	DIMENSION	EXPLANATION
dU	‰	Measured unbalance voltage
dU-URK angle	deg	Angle of the unbalance voltage to the reference URK voltage
Cap. Fault location	N/A, L1-1, L3-2, L2-1, L1-2, L3-1, L2-2	The detected location of the fault: [phase]-[bank]
Calibrated	Off, On	TRUE, if the function has been calibrated
Start Stage1	Off, On	General Start signal for Stage 1
Trip Stage1	Off, On	General Trip command for Stage 1
Start Stage2	Off, On	General Start signal for Stage 2
Trip Stage2	Off, On	General Trip command for Stage 2
<i>dU Voltage input assignment</i>		<i>Status of the graphical analogue input (if exists) (Complete if OK, Missing if not connected)</i>
<i>Voltage input assignment</i>		<i>Status of the graphical analogue input (if exists)</i>

3.1.9.5.6. Events

The following events are generated in the event list, as well as sent to SCADA according to the configuration.

Table 2-6 Events of the capacitor unbalance protection function

EVENT	VALUE	EXPLANATION	IEC61850 DATA ATTRIBUTES (SYSTEM 2.8)	IEC61850 DATA ATTRIBUTES (SYSTEM 2.10)
Start Stage1	Off, On	General Start signal for Stage 1	CUNBPTOV1\$ST\$Str	CUNBPTOV1\$ST\$Str
Trip Stage1	Off, On	General Trip command for Stage 1	CUNBPTOV1\$ST\$Op	CUNBPTOV1\$ST\$Op
Start Stage2	Off, On	General Start signal for Stage 2	CUNBPTOV2\$ST\$Str	CUNBPTOV2\$ST\$Str
Trip Stage2	Off, On	General Trip command for Stage 2	CUNBPTOV2\$ST\$Op	CUNBPTOV2\$ST\$Op
Cap. Fault Location	N/A, L1-1, L3-2, L2-1, L1-2, L3-1, L2-2	The detected location of the fault: [phase]-[bank]	-	CAPFLGGIO3\$ST\$IntIn

3.1.9.6. Technical data

Table 2-7 Technical data of the capacitor unbalance protection function

FUNCTION	VALUE	ACCURACY
Pick-up starting accuracy		< 5 %
Pickup time	< 40 ms	
Angle accuracy		<1 degree*
Reset ratio	0,9	
Reset time	Approx 60 ms	< 2% or ± 35 ms, whichever is greater

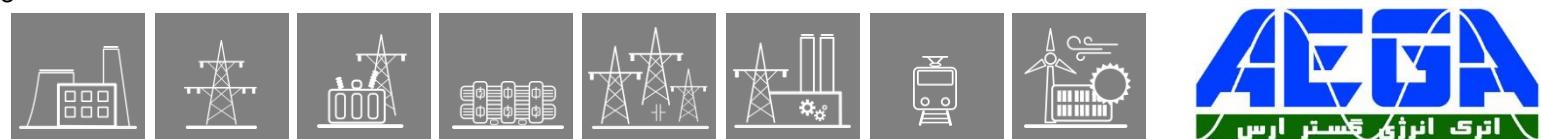
*Valid if the negative sequence component of the network voltage is < 5%

3.1.9.6.1. Notes for testing

Keep in mind that while the max. calibration voltage is set in %, the start values and the on-line measured dU value is given in % (0.1*%).

When calibrating the function, take note of the dU and dU-URK measurement that have been nullified: that unbalance must be taken into consideration when testing the calibrated function.

Normally in the EuroProt+ devices the trip contacts are assigned to the Trip Logic function block, and not to the protection function blocks. Because of this the testing personnel must make sure that the Trip Logic is switched on ('Operation' parameter is set to other than 'Off') before starting the testing, otherwise there will be no physical trip on the relay.


Additional notes for Graphic Analogue inputs (only from firmware version 2.10.2.3010 and up):

Starting from the firmware version 2.10.2.3010, the majority of the function blocks can be updated to be equipped with graphic analogue inputs which **allow the user to assign the functions' analogue inputs by applying the graphic equation editor**.

The analogue connections of these functions can be checked by examining the source that is connected to their inputs (just like examining the source of a logic signal).

These functions must be placed in the Logic Editor and their graphic analogue inputs must be connected to make them operate. If a connection is intact, the online status of the corresponding analogue input will show "Complete". If it is missing, the status will be "Missing" and the function will not operate.

 Note that these graphical inputs do not exist in the earlier firmware/function versions! Checking and modifying the analogue assignments in these cases are done by using the EuroCAP Software Configuration menu.

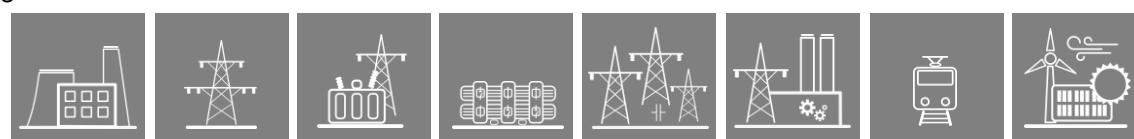
3.1.10. Capacitor unbalance protection for blocks in double delta connection

3.1.10.1. Application

The shunt capacitor banks are usually constructed of capacitor units, and the units contain capacitor elements.

There are constructions of the bank where fuses are connected inside a capacitor unit, in series with an element or a group of elements. The fuse is connected in series with the element that the fuse is designed to isolate if the element becomes faulty. After the breakdown of an element, the fuse connected to it will blow and isolate it from the remaining part of the capacitor, which allows the unit to continue in service. The blowing of one or more fuses decreases the capacitance value and additionally it will cause voltage changes within the bank.

If no internal fuses are applied, then the breakdown of an element increases the capacitance value and additionally it will cause voltage changes within the bank.


Each time an internal capacitor element fails, a slight change of voltage distribution and current flow within the capacitor bank is encountered. The magnitude of these changes depends upon the number of failed elements and their location within the bank.

The main purpose of the capacitor unbalance protection is to give an alarm or to disconnect the entire capacitor bank when unbalances across healthy capacitors, adjacent to a failed capacitor, are excessive. Normally not more than 10 % unbalance should be allowed (unbalance limit according to IEC 871-1 Shunt capacitors for a.c. power systems having a rated voltage above 1000V – Part 1: General).

If an externally fused capacitor is disconnected by its fuse, a larger voltage and current change is obtained than if single elements are disconnected by internal fuses.

This kind of protection prevents steady-state overvoltage and accelerated aging of the capacitor elements.

Another function of the unbalance protection is to remove the bank from service for a fault not isolated by a fuse or to protect banks that are not internally or externally fused. Unbalance protection is not a replacement for short-circuit protection.

3.1.10.2. Mode operation

3.1.10.2.1. Construction of the capacitor bank

This version of the capacitor unbalance protection can be applied if the capacitors in the phases are arranged in double delta connection, according to Figure 1-1.

The capacitors are arranged in two delta connected blocks, with a current transformer connected in each delta branches and additionally in one of the supplying branches. Failures anywhere in the delta branches will cause current difference between the corresponding delta branches. This differential current is measured as a current in the anti-parallel connected current transformers.

For fault location purpose also the current in the supplying branch is measured. The differential currents vector position with reference to the supplying current allows identification of the faulty element.

This method is suitable for large capacitor banks since the total bank will be divided into separate protection zones. The method is not influenced by phase voltage unbalances. It can be used in delta-connected banks.

Connect the current transformers according to Figure 1-1. For the application of the protection function, the CT input module with identification “CT+1155” is to be applied. This kind of module provides sufficient resolution for relatively small currents and allows sensitive setting.

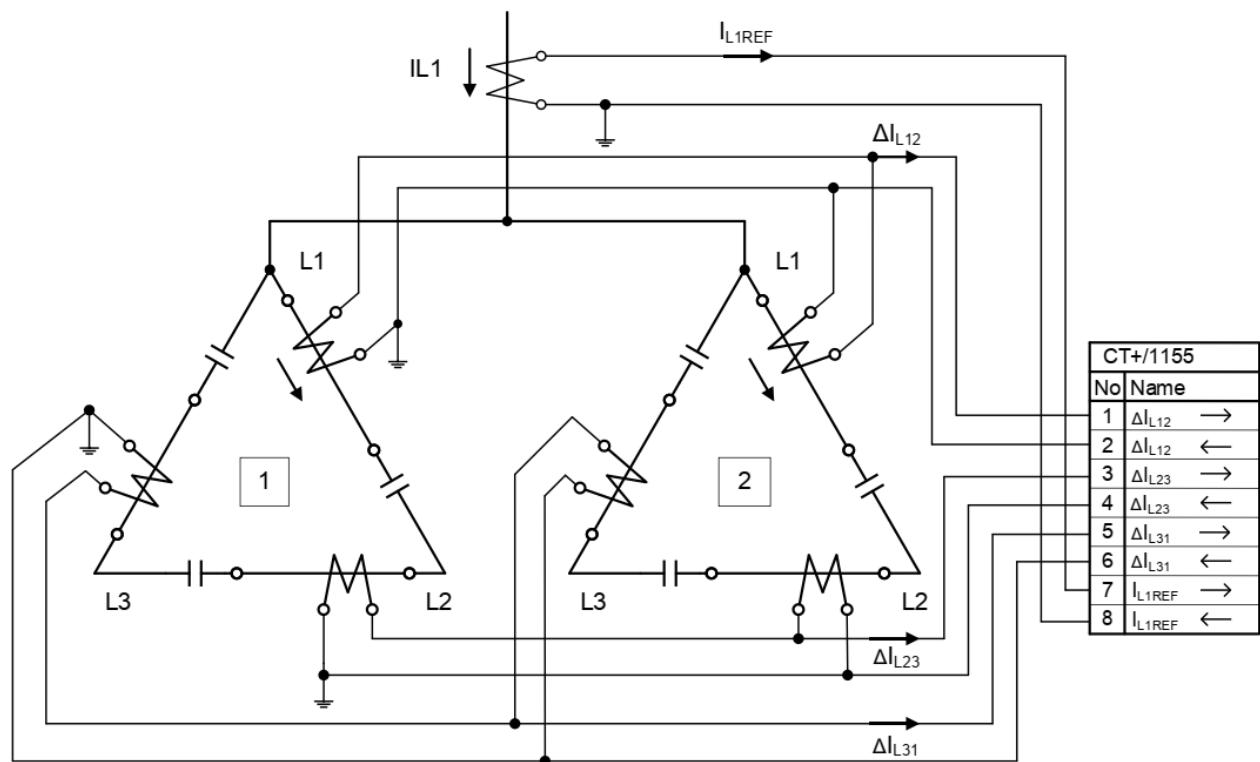
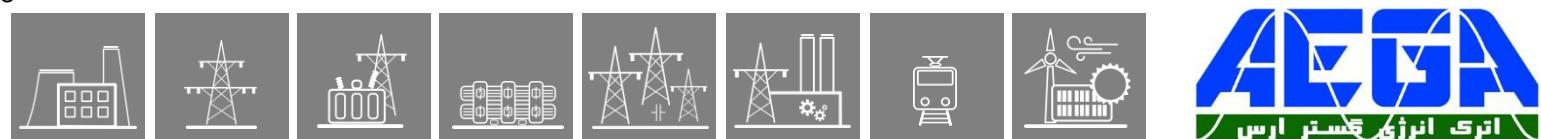



Figure 1-1 Current unbalance in delta connection

3.1.10.2.2. Effect of the “natural” asymmetry of the capacitor bank

The related standard permits a considerable amount of asymmetry, which can be up to 10%, consequently in healthy state a relatively high delta current can flow out of the anti-parallel connected current transformers. At commissioning the unbalance protection function stores the vector position and the value of the “natural” unbalance currents as three reference currents ΔI_{ref} and additionally those of one of the phase currents I_{phase_ref} ($= IL1$, phase-shifted into direction of $IL12$).

The reference currents are corrected according to the actually measured phase currents I_{phase} and the stored complex ratio of ΔI_{ref} and I_{phase_ref} reference current values, measured at calibration.

$$\Delta I_{ref_corr} = I_{phase} \frac{\Delta I_{ref}}{I_{phase_ref}}$$

where all current values are complex Fourier base harmonic vectors for the phases individually:

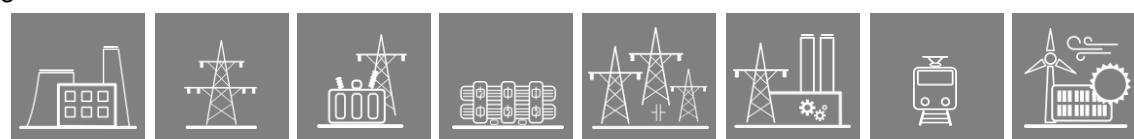
ΔI_{ref}	reference current measured as delta currents of all three delta branches at calibration,
ΔI_{ref_corr}	corrected reference currents of all three delta branches,
I_{phase}	measured phase current in phase L1 (IL1),
I_{phase_ref}	phase current in phase L1 measured at calibration (IL1 ref).

The correction is performed with one phase current in all three delta branches separately.

NOTE: This approach, using a single phase current, supposes that the asymmetry of the network itself does not change, or the changes are cleared with high speed by other protection functions.

3.1.10.2.3. The energizing quantity (G)

If there are no changes inside the capacitor then no change can be detected in the actually measured unbalance currents.


Accordingly, the energizing quantity for evaluation is the difference of the measured currents in the delta branches and the corrected reference current:

$$G = dI = \Delta I - \Delta I_{ref_corr}$$

where all current values are complex Fourier base harmonic vectors:

ΔI	currents measured in the delta branches,
ΔI_{ref_corr}	corrected reference currents (see above).

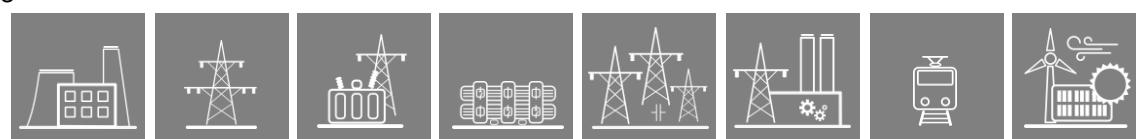
NOTE: The correction is performed in all three delta branches separately with one phase current.

3.1.10.3. Calibration at commissioning

The task of the commissioning is to store the reference values for three delta branches ΔI_{ref} , and that of one of the phase currents I_{phase_ref} in the memory.

For this purpose, the function block has a dedicated binary input: *Calib*. This input must be activated for the calibration. For the physical means for activation see the description of the configuration. This input may be programmed by the user, using the graphic logic editor.

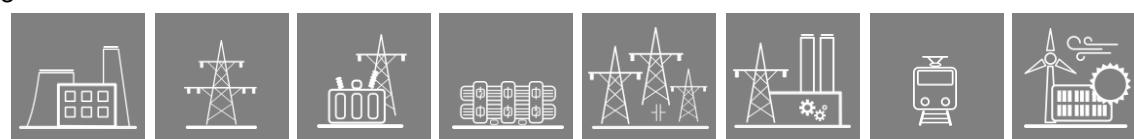
The calibration at the moment of activation can be performed only if the conditions for calibration are fulfilled. The conditions for calibration are:


- The phase currents must be less than $2*In$ of the current input. The rated In current is defined by setting the parameter "Rated Current".
- The phase currents must be above 70% of the rated capacitor current. The rated In current is defined by setting the parameter "Rated Current".
- The delta currents must be less than the value set by the dedicated parameter "Max ΔI at Calibration". This parameter is related to the rated current of the delta current input.

The calibrated state is indicated by the dedicated binary output of the function *Calibrated*. This output gets in "true" state only if the calibration procedure in all three phases was successful.

The calibration values are stored in non-volatile memory, separately for each parameter set.

The *Reset* binary input resets the calibrated state.


Among the "on-line" information the function continuously displays the ΔI currents measured in the delta branches. At the moment of calibration these vectors reset to zero vector. See Figure 1-2. At the same time the "Calibrated" field on the screen displays a check mark. If, however, after calibration any changes happen within the capacitor bank then the displayed values change.

[-] CAPACITOR UNBALANCE

dI L12	0.0	%
dIL12-IL1 angle	0	deg
dI L23	0.0	%
dIL23-IL1 angle	0	deg
dI L31	0.0	%
dIL31-IL1 angle	0	deg
Cap. Fault location	N/A	
General Start Stage1	<input type="checkbox"/>	
General Trip Stage1	<input type="checkbox"/>	
General Start Stage2	<input type="checkbox"/>	
General Trip Stage2	<input type="checkbox"/>	
Calibrated	<input type="checkbox"/>	
Start Stage1 L12	<input type="checkbox"/>	
Trip Stage1 L12	<input type="checkbox"/>	
Start Stage1 L23	<input type="checkbox"/>	
Trip Stage1 L23	<input type="checkbox"/>	
Start Stage1 L31	<input type="checkbox"/>	
Trip Stage1 L31	<input type="checkbox"/>	
Start Stage2 L12	<input type="checkbox"/>	
Trip Stage2 L12	<input type="checkbox"/>	
Start Stage2 L23	<input type="checkbox"/>	
Trip Stage2 L23	<input type="checkbox"/>	
Start Stage2 L31	<input type="checkbox"/>	
Trip Stage2 L31	<input type="checkbox"/>	
dI123 Current input assignment	Complete	
Iref Current input assignment	Complete	

Figure 1-2 On-line display of the “ $dI = \Delta I - \Delta I_{ref_corr}$ ” currents, referred to the rated current

3.1.10.4. Operating characteristics

The capacitor unbalance protection function is configured with two independent stages.

For the first stage definite time characteristic and several types of inverse characteristics can be selected. The second stage has a definite time characteristic.

3.1.10.4.1. Definite time characteristic

$$t(G) = t_{OP} \text{ when } G > G_S$$

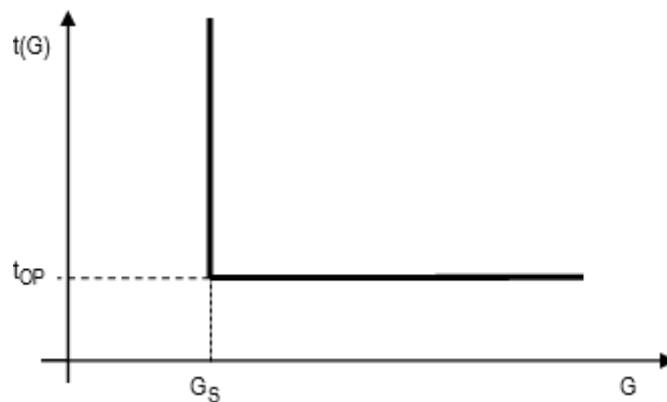


Figure 1-3 Overcurrent definite time characteristic

Where

t_{OP} (seconds) theoretical operating time if $G > G_S$, fix, according to the preset parameter,

G measured value of the characteristic quantity, Fourier base harmonic value, see section 1.2.3,

G_S preset starting value of the characteristic quantity.

3.1.10.4.2. Standard inverse time characteristics

Operating characteristics:

$$t(G) = TMS \left[\frac{k}{\left(\frac{G}{G_S} \right)^\alpha - 1} + c \right] \text{ where } G > G_S$$

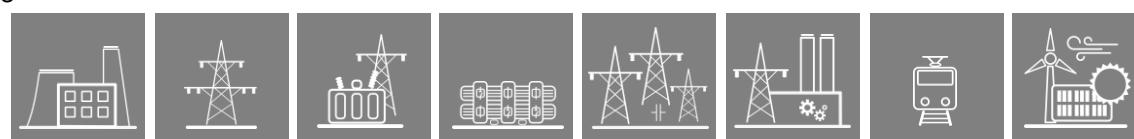
Where

$t(G)$ (seconds)	theoretical operate time with constant value of G ,
k, c	constants characterizing the selected curve (in seconds),
α	constants characterizing the selected curve (no dimension),
G	measured value of the characteristic quantity, Fourier base harmonic value, see section 1.2.3,
G_S	preset starting value of the characteristic quantity,
TMS	preset time multiplier (no dimension).

Table 1-1 The constants of the standard dependent time characteristics

	IEC REF	TITLE	k_r	c	α
1	A	IEC Inv	0,14	0	0,02
2	B	IEC VeryInv	13,5	0	1
3	C	IEC ExtInv	80	0	2
4		IEC LongInv	120	0	1
5		ANSI Inv	0,0086	0,0185	0,02
6	D	ANSI ModInv	0,0515	0,1140	0,02
7	E	ANSI VeryInv	19,61	0,491	2
8	F	ANSI ExtInv	28,2	0,1217	2
9		ANSI LongInv	0,086	0,185	0,02
10		ANSI LongVeryInv	28,55	0,712	2
11		ANSI LongExtInv	64,07	0,250	2

The end of the effective range of the inverse time characteristics (G_D) is:


$$G_D = 20 * G_S$$

Above this value the theoretical operating time is definite:

$$t(G) = TMS \left[\frac{k}{\left(\frac{G_D}{G_S} \right)^\alpha - 1} + c \right] \text{ where } G > G_D = 20 * G_S$$

Additionally, a minimum time delay can be defined by parameter setting. This delay is valid if it is longer than $t(G)$, defined by the formula of the operating characteristics above.

The inverse characteristic is valid above $G_T = 1,1 * G_S$. Above this value the function is guaranteed to operate.

Resetting characteristics:

- For IEC type characteristics the resetting is after a fix time delay defined by the parameter CapUnB3_Reset_TPar_d (Reset Time),
- for ANSI types however according to the formula below:

$$t_r(G) = TMS \left[\frac{k_r}{1 - \left(\frac{G}{G_s} \right)^\alpha} \right] \text{ where } G > G_s$$

Where

$t_r(G)$ (seconds)	theoretical reset time with constant value of G ,
k_r	constants characterizing the selected curve (in seconds),
α	constants characterizing the selected curve (no dimension),
G	measured value of the characteristic quantity, Fourier base harmonic of the phase currents, see section 1.2.3,
G_s	preset value of the characteristic quantity (CapUnB3_StCurr1_IPar_, Start current 1),
TMS	preset time multiplier (no dimension).

Table 1-2 The resetting constants of the standard dependent time characteristics

	IEC REF	TITLE	k_r	α
1	A	IEC Inv	Resetting after fix time delay, according to preset parameter CapUnB3_Reset_TPar_ "Reset Time"	
2	B	IEC VeryInv		
3	C	IEC ExtInv		
4		IEC LongInv		
5		ANSI Inv	0,46	2
6	D	ANSI ModInv	4,85	2
7	E	ANSI VeryInv	21,6	2
8	F	ANSI ExtInv	29,1	2
9		ANSI LongInv	4,6	2
10		ANSI LongVeryInv	13,46	2
11		ANSI LongExtInv	30	2

3.1.10.5. Fault location

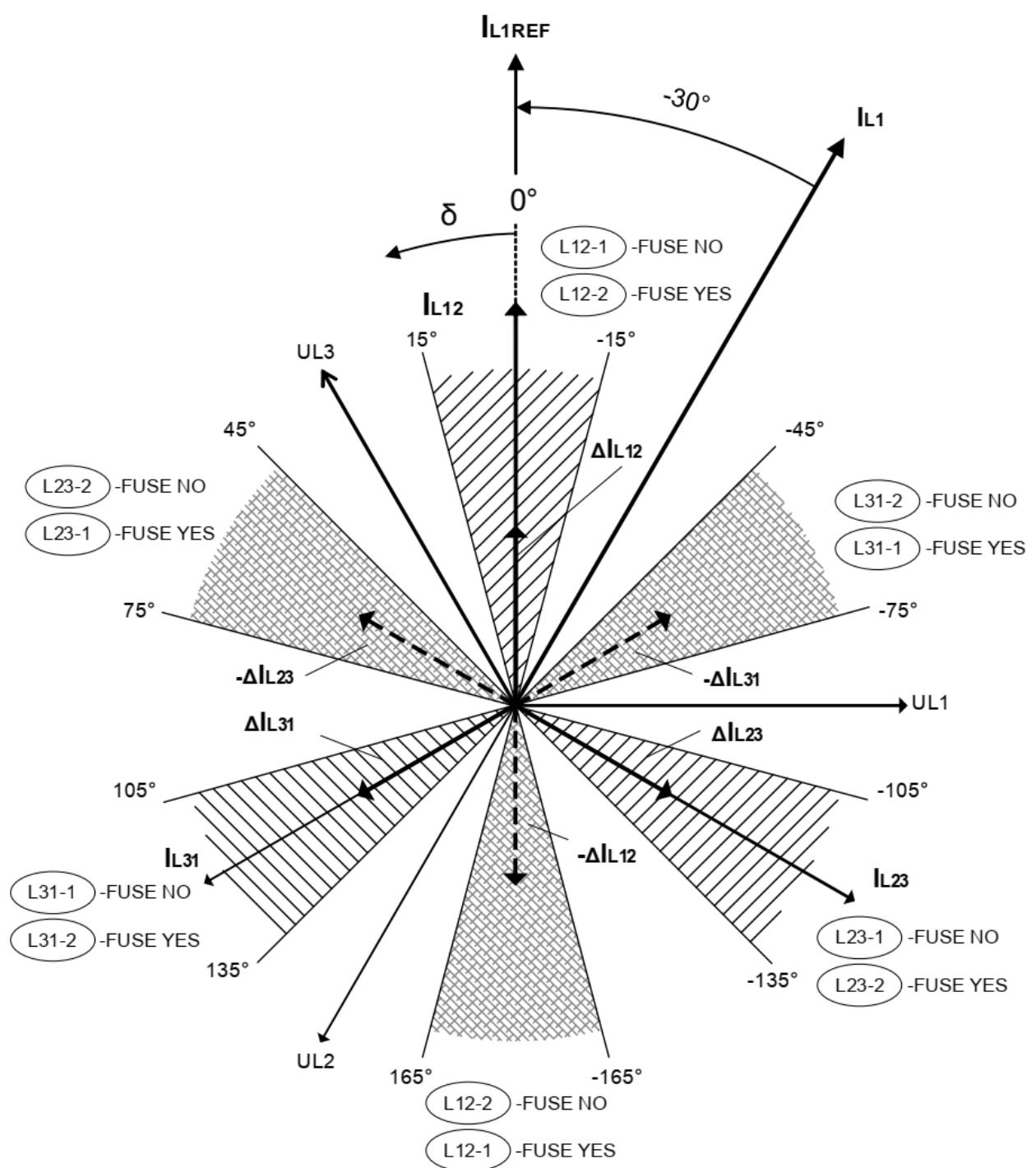
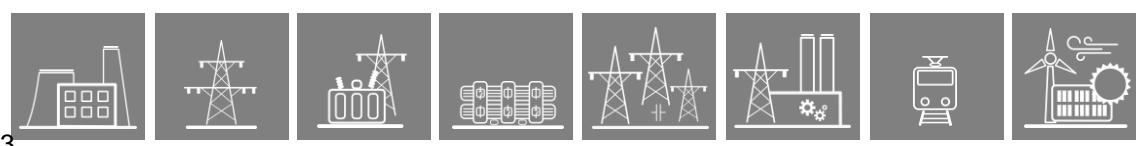
The vector measurement enables identification of the faulty capacitor unit. For the explanation of the principle of fault location consider the positive direction of the current I_{phase} and ΔI as indicated in Figure 1-1.

Now consider a fault in the branch L1-L2, inside unit 1 in the capacitor C12, which increases the capacitance value, consequently, decreases the impedance related to the corresponding impedance of the unit 2. The current in C12 increases related to the current of C12 of unit 2, consequently the delta current flows into the device with the direction from the unit 1 towards the unit 2. It is obvious that this current is in phase with the current of the original capacitor current " I_{L12} ". Consequently the ΔI current measured is in phase with the current of the original capacitor in the branch L1-L2. To permit some asymmetry changes in the network and some measuring error, this current is inside the shaded area between -15° and $+15^\circ$ of Figure 1-4. The on-line measurement will display the increased " dI_{L12} " value with " $dI_{L12}-IL1Ref\ angle$ " in this range. The related event indicates "L12-1".

The inverse current vector flows if the value of the capacitor C12 in unit2 increases, here the event should be "L12-2".

If the capacitor elements are not fused, then the breakdown of a capacitor element will short-circuit a "layer" of capacitors. The capacitance increases and consequently also the capacitive current increases. This case was described in the explanation above.

If, however, the capacitor elements are individually fused then the breakdown of a capacitor element results disconnection from the "layer" of capacitors. The resultant capacitance decreases, and the result is opposite to the explanation above. The schema is drawn in Figure 1-4.



For correct evaluation the information is needed: whether internal fuses are applied or not. This is to be set by the Boolean parameter "Internal fuse".

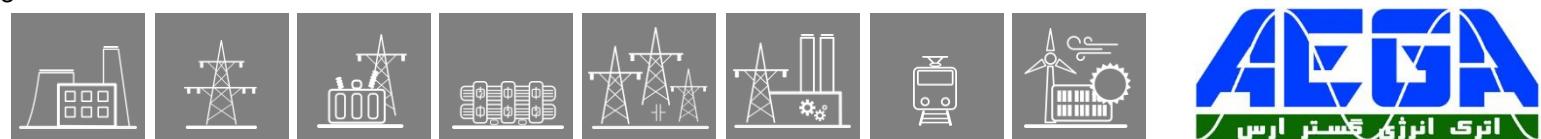

The event list related to the capacitor faults can contain the following messages:

Table 1-3 Capacitor fault location

MESSAGE	EXPLANATION
Start1	Stage 1 started
Start2	Stage 2 started
Trip1	Stage 1 generated a TRIP command
Trip2	Stage 2 generated a TRIP command
Start1 L12	Fault detected in stage 1, measuring element 12
Start2 L12	Fault detected in stage 2, measuring element 12
Start1 L23	Fault detected in stage 1, measuring element 23
Start2 L23	Fault detected in stage 2, measuring element 23
Start1 L31	Fault detected in stage 1, measuring element 31
Start2 L31	Fault detected in stage 2, measuring element 31
Cap Fault location L12-1	Fault in delta branch 12 of block 1
Cap Fault location L12-2	Fault in delta branch 12 of block 2
Cap Fault location L23-1	Fault in delta branch 23 of block 1
Cap Fault location L23-2	Fault in delta branch 23 of block 2
Cap Fault location L31-1	Fault in delta branch 31 of block 1
Cap Fault location L31-2	Fault in delta branch 31 of block 2

NOTE: The fault location is active in "Calibrated" state only. The location is calculated 80 msec after the starting. The event is registered at the moment of trip command generation.

3.1.10.6. Overview

The function block of the capacitor unbalance protection function is shown in Figure 2-1. This block shows all binary input and output status signals that are applicable in the graphic logic editor.

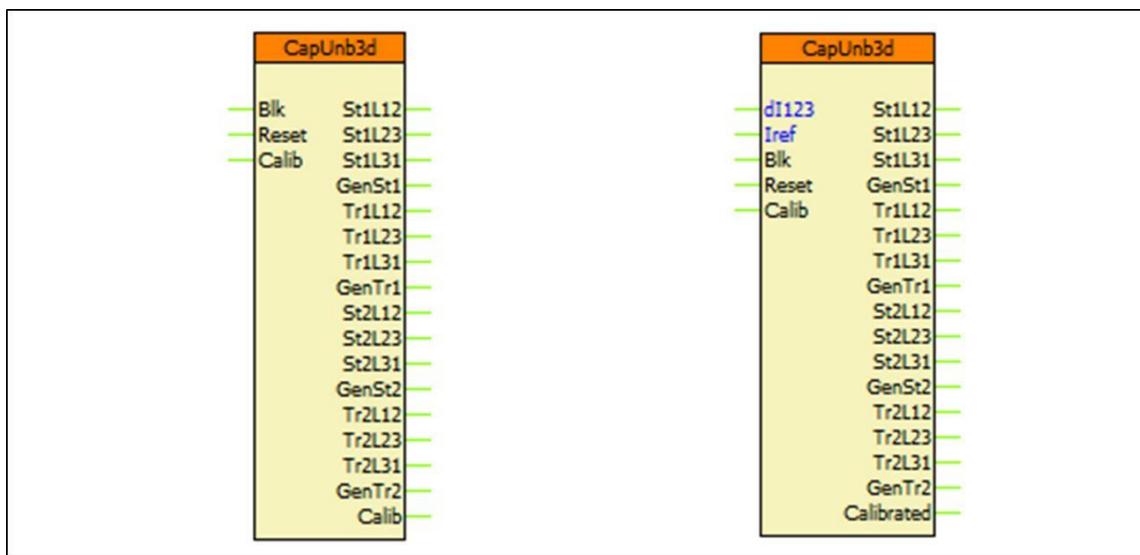
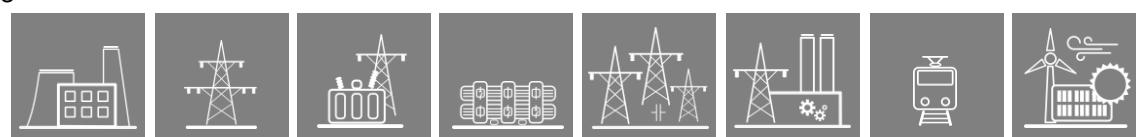


Figure 2-1 The function block of the capacitor unbalance protection function


3.1.10.7. Settings

3.1.10.7.1. Parameters

The parameters are listed as they are seen on the local or remote HMI.

Table 2-1 Parameters of the capacitor unbalance protection function

TITLE	DIM	RANGE	STEP	DEFAULT	EXPLANATION
Internal fuse	-	FALSE, TRUE	-	FALSE	FALSE means no internal fuse TRUE means capacitor units with internal fuse
Rated Current	%	15 – 120	1	100	Nominal current of the capacitor, as percent of the rated input current
Max dI at Calibration	%	5 – 50	1	10	ΔI setting, at calibration the current in the bridge must be below this level
Reference phase	deg	-180 – 180	1	0	Angle of reference current; set 0 if L1 or -120 if L2 is connected to reference input
Operation Stage 1	-	Off, DefinitTime, IEC Inv, IEC VeryInv, IEC ExtInv, IEC LongInv, ANSI Inv, ANSI ExtInv, ANSI LongInv, ANSI LongVeryInv, ANSI LongExtInv	-	Off	Enabling or disabling Stage 1 of the capacitor unbalance protection function

Start Current 1	%	1 – 100	1	10	Current setting for the capacitor unbalance protection function, first stage
Time Multiplier		0.05 – 15.00	0.01	1.00	Time multiplier setting for the inverse type characteristics
Min Time Delay	msec	40 – 60000	1	100	Minimum time delay for the inverse type characteristics (valid, if this characteristic is selected)
Definite Time Delay 1	msec	40 – 60000	1	1000	Definite time delay for the first stage (valid, if this characteristic is selected)
Reset time	msec	50 – 60000	1	100	Reset time setting
Operation Stage2	-	Off,On	-	Off	Enabling or disabling Stage 2 of the capacitor unbalance protection function
Start Current 2	%	1 – 100	1	10	Current setting for the capacitor unbalance protection function, second stage
Definite Time Delay 2	msec	40 – 60000	1	1000	Definite time delay for the second stage (valid, if this characteristic is selected)

3.1.10.8. Function I/O

This section describes briefly the analogue and digital inputs and outputs of the function block.

3.1.10.8.1. Analogue inputs

Graphic Analogue inputs (only from firmware version 2.10.2.3010 and up)

The sources of the analogue inputs are defined by the user, applying the graphic equation editor (*Logic Editor*). Parts written in **bold** are seen on the left side of the function block in the Logic editor.

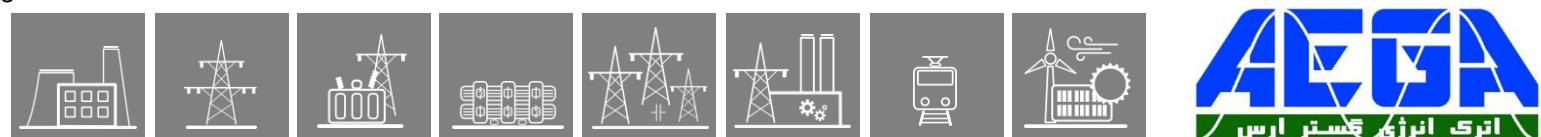
The function uses the following analogue signals as inputs:

Table 2-2 Analogue input signals of the capacitor unbalance protection function

ANALOGUE INPUT SIGNAL	SIGNAL TITLE	EXPLANATION
CapUnB3_dI123_AnIn_d	Delta current group	Input for the three delta unbalance currents
CapUnB3_Iref_AnIn_d	Reference current	Input for the phase current

The applied analogue connectors must be identical to the analogue input type (i.e. voltage to voltage input etc.), Invalid connections are not allowed.

3.1.10.8.2. Analogue outputs (measurements)

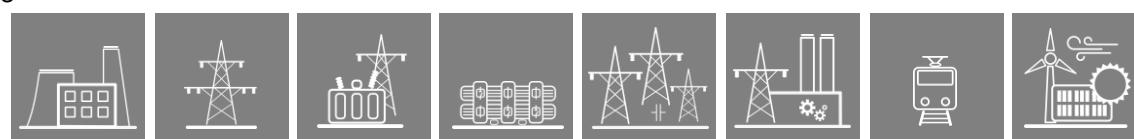

The function has no analogue output signals.

3.1.10.8.3. Binary input signals (graphed output statuses)

The conditions of the inputs are defined by the user, applying the graphic equation editor (logic editor). The part written in **bold** is seen on the function block in the logic editor.

Table 2-3 Binary input status signals of the capacitor unbalance protection function

BINARY INPUT SIGNAL	EXPLANATION
CapUnB3_Blk_GrO_d	Blocking input
CapUnB3_Reset_GrO_d	Resetting the calibrated state
CapUnB3_Calib_GrO_d	Binary input for calibration

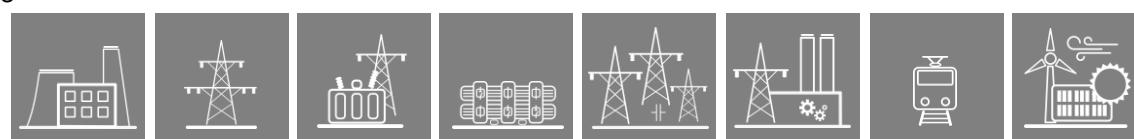


3.1.10.8.4. Binary output signals (graphed input statuses)

The binary output status signals of the of the capacitor unbalance protection function. Parts written in **bold** are seen on the function block in the logic editor.

Table 2-4 Binary output status signals of the capacitor unbalance protection function

BINARY OUTPUT SIGNAL	SIGNAL TITLE	EXPLANATION
CapUnB3_**St1L12_Grl_d	Start Stage1 L12	Start signal for Stage 1, delta branch 12
CapUnB3_**Tr1L12_Grl_d	Trip Stage1 L12	Trip command for Stage 1, delta branch 12
CapUnB3_**St2L12_Grl_d	Start Stage2 L12	Start signal for Stage 2, delta branch 12
CapUnB3_**Tr2L12_Grl_d	Trip Stage2 L12	Trip command for Stage 2, delta branch 12
CapUnB3_**St1L23_Grl_d	Start Stage1 L23	Start signal for Stage 1, delta branch 23
CapUnB3_**Tr1L23_Grl_d	Trip Stage1 L23	Trip command for Stage 1, delta branch 23
CapUnB3_**St2L23_Grl_d	Start Stage2 L23	Start signal for Stage 2, delta branch 23
CapUnB3_**Tr2L23_Grl_d	Trip Stage2 L23	Trip command for Stage 2, delta branch 23
CapUnB3_**St1L31_Grl_d	Start Stage1 L31	Start signal for Stage 1, delta branch 31
CapUnB3_**Tr1L31_Grl_d	Trip Stage1 L31	Trip command for Stage 1, delta branch 31
CapUnB3_**St2L31_Grl_d	Start Stage2 L31	Start signal for Stage 2, delta branch 31
CapUnB3_**Tr2L31_Grl_d	Trip Stage2 L31	Trip command for Stage 2, delta branch 31
CapUnB3_GenSt1_Grl_d	General Start Stage1	OR connection of three signals above
CapUnB3_GenTr1_Grl_d	General Trip Stage1	OR connection of three signals above
CapUnB3_GenSt2_Grl_d	General Start Stage2	OR connection of three signals above
CapUnB3_GenTr2_Grl_d	General Trip Stage2	OR connection of three signals above
CapUnB3_Calibrated_Grl_d	Calibrated	TRUE, if the function has been calibrated

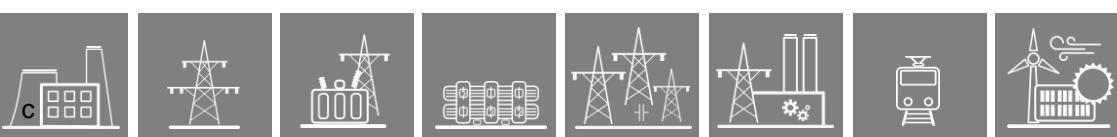


3.1.10.8.5. On-line data

Visible values on the on-line data page:

Table 2-5 The displayed on-line data of the capacitor unbalance protection function

SIGNAL TITLE	DIMENSION	EXPLANATION
dl L12	%	Magnitude of the measured differential current in delta branch 12.
dIL12-IL1 angle	deg	Angle of the L12 differential current related to the phase L1 current.
dl L23	%	Magnitude of the measured differential current in delta branch 23.
dIL23-IL1 angle	deg	Angle of the L23 differential current related to the phase L1 current.
dl L31	%	Magnitude of the measured differential current in delta branch 31.
dIL31-IL1 angle	deg	Angle of the L31 differential current related to the phase L1 current.
Cap. Fault location	N/A, L12-1, L12-2, L23-1, L23-2, L31-1, L31-2	The detected location of the fault: [delta branch]-[bank]
General Start Stage1	Off,On	General Start signal for Stage 1
General Trip Stage1	Off,On	General Trip command for Stage 1
General Start Stage2	Off,On	General Start signal for Stage 2
General Trip Stage2	Off,On	General Trip command for Stage 2
Calibrated	Off,On	TRUE, if the function has been calibrated
Start Stage1 L12	Off,On	Start signal for Stage 1, delta branch 12
Trip1 L12	Off,On	Trip command for Stage 1, delta branch 12
Start Stage1 L23	Off,On	Start signal for Stage 1, delta branch 23
Trip Stage1 L23	Off,On	Trip command for Stage 1, delta branch 23
Start Stage1 L31	Off,On	Start signal for Stage 1, delta branch 31
Trip Stage1 L31	Off,On	Trip command for Stage 1, delta branch 31
Start Stage2 L12	Off,On	Start signal for Stage 2, delta branch 12
Trip Stage2 L12	Off,On	Trip command for Stage 2, delta branch 12
Start Stage2 L23	Off,On	Start signal for Stage 2, delta branch 23
Trip Stage2 L23	Off,On	Trip command for Stage 2, delta branch 23
Start Stage2 L31	Off,On	Start signal for Stage 2, delta branch 31
Trip Stage2 L31	Off,On	Trip command for Stage 2, delta branch 31
dl123 Current input assignment		Status of the graphical analogue input (if exists) (Complete if OK, Missing if not connected)
Iref Current input assignment		Status of the graphical analogue input (if exists)



3.1.10.8.6. Events

The following events are generated in the event list, as well as sent to SCADA according to the configuration.

Table 2-6 Events of the capacitor unbalance protection function

EVENT	VALUE	EXPLANATION	IEC6 1850 DATA ATTRIBUTES (SYSTEM 2.8)	IEC6 1850 DATA ATTRIBUTES (SYSTEM 2.10)
Start Stage 1	Off,On	General Start signal for Stage 1	F3PTOC3\$ST\$Str	CUNBPTOC5\$ST\$Str
Start Stage 2	Off,On	General Trip command for Stage 1	F3PTOC4\$ST\$Str	CUNBPTOC6\$ST\$Str
Trip Stage 1	Off,On	General Start signal for Stage 2	F3PTOC3\$ST\$Op	CUNBPTOC5\$ST\$Op
Trip Stage 2	Off,On	General Trip command for Stage 2	F3PTOC4\$ST\$Op	CUNBPTOC6\$ST\$Op
Start Stage1 L12	Off,On	Start signal for Stage 1, delta branch 12	F3PTOC3\$ST\$Str\$phsA	CUNBPTOC5\$ST\$Str\$phsA
Start Stage2 L12	Off,On	Start signal for Stage 2, delta branch 12	F3PTOC4\$ST\$Str\$phsA	CUNBPTOC6\$ST\$Str\$phsA
Start Stage1 L23	Off,On	Start signal for Stage 1, delta branch 23	F3PTOC3\$ST\$Str\$phsB	CUNBPTOC5\$ST\$Str\$phsB
Start Stage2 L23	Off,On	Start signal for Stage 2, delta branch 23	F3PTOC4\$ST\$Str\$phsB	CUNBPTOC6\$ST\$Str\$phsB
Start Stage1 L31	Off,On	Start signal for Stage 1, delta branch 31	F3PTOC3\$ST\$Str\$phsC	CUNBPTOC5\$ST\$Str\$phsC
Start Stage2 L31	Off,On	Start signal for Stage2, delta branch 31	F3PTOC4\$ST\$Str\$phsC	CUNBPTOC6\$ST\$Str\$phsC
Cap Fault location	N/A, L12-1, L12-2, L23-1, L23-2, L31-1, L31-2	The detected location of the fault: [delta branch]-[bank]	FLGGIO3\$ST\$IntIn	CAPFLGGIO4\$ST\$IntIn

3.1.10.9. Technical data

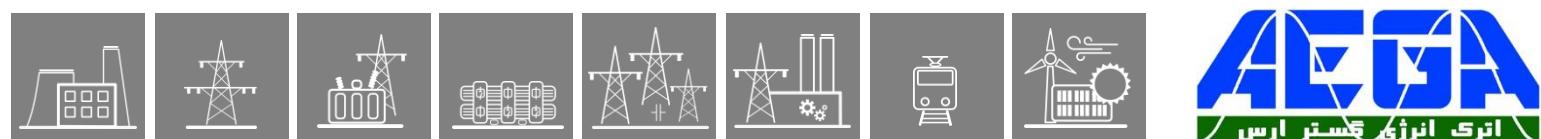
Table 2-7 Technical data of the capacitor unbalance protection function

FUNCTION	VALUE	ACCURACY
Pick-up starting accuracy	$20 \leq G_S \leq 1000$	< 5 %
Pickup time	< 40 ms	
Angle accuracy		<1 degree
Reset ratio	0,9	
Reset time Dependent time char. Definite time char.	Approx 60 ms	< 2% or ± 35 ms, whichever is greater
Operate time accuracy		$\pm 5\%$ or ± 15 ms, whichever is greater

3.1.10.9.1. Notes for testing

When calibrating the function, take note of the DI measurement that has been nullified: that unbalance must be taken into consideration when testing the calibrated function.

Normally in the EuroProt+ devices the trip contacts are assigned to the Trip Logic function block, and not to the protection function blocks. Because of this the testing personnel must make sure that the Trip Logic is switched on ('Operation' parameter is set to other than 'Off') before starting the testing, otherwise there will be no physical trip on the relay.


Additional notes for Graphic Analogue inputs (only from firmware version 2.10.2.3010 and up):

Starting from the firmware version 2.10.2.3010, the majority of the function blocks can be updated to be equipped with graphic analogue inputs which **allow the user to assign the functions' analogue inputs by applying the graphic equation editor**.

The analogue connections of these functions can be checked by examining the source that is connected to their inputs (just like examining the source of a logic signal).

These functions must be placed in the Logic Editor and their graphic analogue inputs must be connected to make them operate. If a connection is intact, the online status of the corresponding analogue input will show "Complete". If it is missing, the status will be "Missing" and the function will not operate.

 Note that these graphical inputs do not exist in the earlier firmware/function versions! Checking and modifying the analogue assignments in these cases are done by using the EuroCAP Software Configuration menu.

3.1.11. Capacitor overvoltage protection function

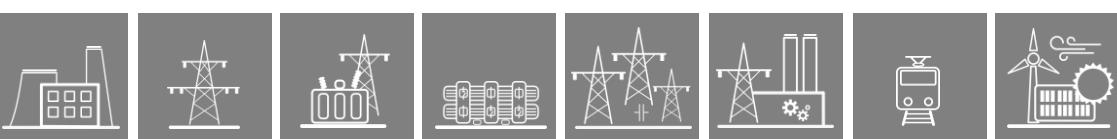
3.1.11.1. Application

The power frequency voltage of a network can be high due to voltage fluctuation and regulation or due to the voltage rise at light load. The shunt capacitors connected to the network need protection against high steady state voltage, because the voltage over the rated level accelerates the aging of the material inside the capacitor.

A moderated overvoltage can be tolerated for a relatively long time; the high overvoltages however need fast disconnection. The characteristic of this overvoltage protection function is a certain kind of inverse type characteristics, defined in international standards (IEC 60871-1 Shunt capacitors for a.c. power systems having a rated voltage above 1000 V – Part 1: General, or ANSI/IEEE C37.99 Capacitor Banks, Guide for Protection of Shunt).

The function has additionally a definite time warning stage, the setting of which is independent of that of the inverse type tripping stage.

The capacitors on a network in most cases have no dedicated voltage measurement, the voltage transformers on the busbar measure voltage even in disconnected state of the capacitors. To avoid these kinds of problems, this protection function measures the currents in the phases of the capacitor and calculates the voltages in the phases independently. The warning and trip decision is based on the calculated voltage values.


3.1.11.2. Mode of operation

The capacitor overvoltage protection function measures phase currents. The phase voltages as a function of the time can be calculated by integration of the current time function of the phases:

$$u(t) = \frac{1}{C} \int i(t) dt$$

This integral, which is evaluated using a simple numerical method, considers also the higher harmonic contents of the current up to the 10th harmonic. All harmonics with higher ordinal number are filtered out.

The function does not consider the transient values caused by switching procedures, these values are filtered out. The decision is based on the steady state values, since the time delay can be several minutes, and only the symmetrical peak values are considered. The calculated and found peak values are related to the rated power frequency peak voltage. If the voltage is above the setting value, then the time is weighted according to the inverse type characteristic, and based on the time multiplier setting (K). These values are added (accumulated). If this accumulated time exceeds the limit, the function generates the trip command.

3.1.11.3. Operating characteristics

3.1.11.3.1. Inverse type tripping characteristic

The international standards (IEC 60871-1 or ANSI/IEEE C37.99) define the operate time, as the maximum duration for some values of the power frequency voltage. Based on these standards the characteristic is defined on the following discrete values: (shown in Table 1-1.)

Table 1-1 Admissible voltage levels in service

VOLTAGE FACTOR $*U_N$ V R.M.S.	MAXIMUM DURATION DEFINED IN THE STANDARDS	MAXIMUM DURATION IN SECONDS
1	Continuous	
1.15	30 min in every 24 h	1800 s
1.2	5 min	300 s
1.3	1 min	60 s
1.4	15 s	15 s
1.7	1 s	1 s
2.0	0.3 s	0.3 s
2.2	0.12 s	0.12 s

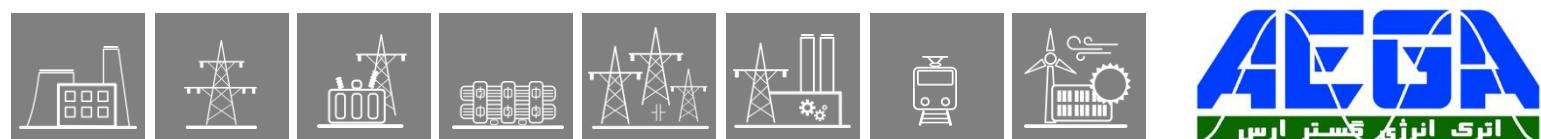
Additionally, the characteristic can be modified by the time multiplier setting (K).

According to the standards, the amplitudes of the overvoltages that may be tolerated without significant deterioration of the capacitor depend on:

- their total duration,
- their total number and
- the capacitor temperature.

The total duration of the overvoltage is covered by the accumulation.

The number of the overvoltages is considered in this protection function as follows:


If the voltage peak is above $1.1 * U_{Npeak}$ then additionally to the accumulation, a reset time measurement is started. Then

- If the accumulated value reaches the trip value, then the trip command is generated.
- If the voltage peak drops below $1 * U_{Npeak}$ then both the integral and the reset time measurement reset to zero.
- If the voltage peak drops below $1.1 * U_{Npeak}$ but above $1 * U_{Npeak}$ then the integral is “frozen”, and the reset time keeps on counting. In this state
 - If the voltage peak is above $1.1 * U_{Npeak}$ again then the accumulation is going on starting with the “frozen” value.
 - If the reset time measurement gets above the reset time setting without trip generation, then both the integral and the reset time measurement reset to zero.

Concerning the effect of the ambient temperature, this simple protection function does not include direct ambient temperature measurement. It is the task of the user to set the appropriate time multiplier value (K), to accelerate the trip command for the worst case expected temperature (or delay the trip command if the ambient temperature is continuously below the rated temperature of the capacitor type test).

3.1.11.3.2. Definite time warning characteristic

This protection function has additionally a definite time warning stage, the setting of which is independent of that of the inverse type tripping stage.

3.1.11.4. Overview

The function block of the capacitor overvoltage protection function is shown in Figure 2-1. This block shows all binary input and output status signals that are applicable in the graphic equation editor. On the right, the updated version is shown with renamed and rearranged outputs and analogue inputs (from system version 2.10 and up).

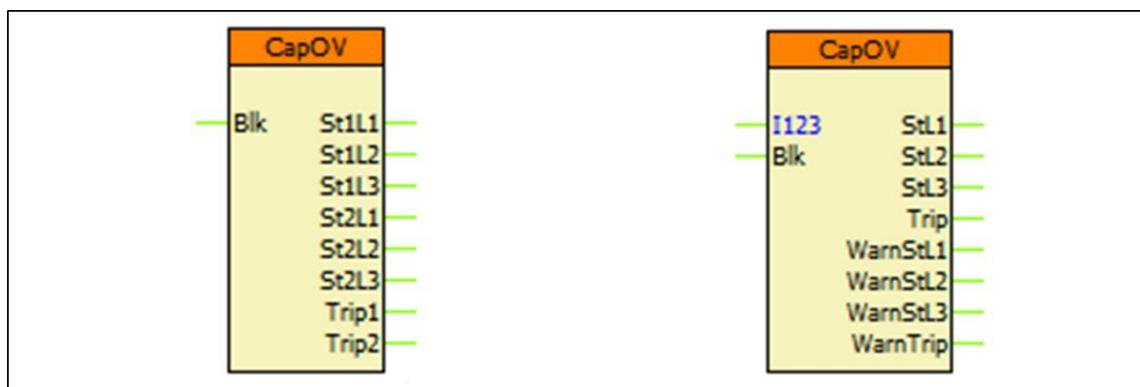
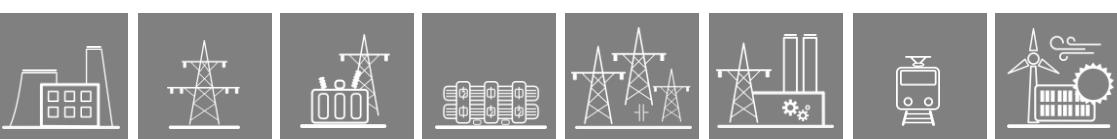


Figure 2-1 The function block of the capacitor overvoltage protection function


3.1.11.5. Settings

3.1.11.5.1. Parameters

The parameters are listed as they are seen on the local or remote HMI.

Table 2-1 Parameters of the capacitor overvoltage protection function

TITLE	DIM	RANGE	STEP	DEFAULT	EXPLANATION
Operation	-	Off, On	-	Off	Enabling or disabling the capacitor overvoltage protection function
Rated current	%	10 - 120	1	100	Capacitor nominal current, related to the rated current of the current transformer. The integral of this current defines the nominal basic harmonic voltage, the peak value of which is the reference for overvoltage detection.
Reset Time	sec	1 - 60000	1	3600	Reset time setting for Trip stage (Stage 1)
Time Multiplier	-	0.20 – 2.00	0.01	1.00	Time multiplier for the inverse type characteristic
Warning Start	%	80-120	1	100	Value of the overvoltage, related to the rated voltage of the capacitor, to start the Warning stage (Stage 2) of the function
Warning Delay	sec	1-3600	1	60	Definite time delay for Warning stage (Stage 2)

3.1.11.6. Function I/O

This section describes briefly the analogue and digital inputs and outputs of the function block.

3.1.11.6.1. Analogue inputs

Graphic Analogue inputs (only from firmware version 2.10.2.3010 and up)

The sources of the analogue inputs are defined by the user, applying the graphic equation editor (*Logic Editor*). Parts written in **bold** are seen on the left side of the function block in the Logic editor.

Table 2-2 Analogue input signal of the capacitor overvoltage protection function

ANALOGUE INPUT SIGNAL	SIGNAL TITLE	EXPLANATION
CapOV_I123_AnIn_	3phase current	Input for 3-phase current

The applied analogue connectors must be identical to the analogue input type (i.e. voltage to voltage input etc.), Invalid connections are not allowed.

3.1.11.6.2. Analogue outputs

The function has no analogue output signals.

3.1.11.6.3. Binary input signals (graphed output statuses)

The conditions of the inputs are defined by the user, applying the graphic equation editor (logic editor). The part written in **bold** is seen on the function block in the logic editor.

Table 2-3 The binary input status signal of the capacitor overvoltage protection function

BINARY INPUT STATUS SIGNAL	EXPLANATION
CapOV_Blk_GrO_	Output status of a graphic equation defined by the user to disable the capacitor overvoltage protection function.

3.1.11.6.4. Binary output signals (graphed input statuses)

The binary output status signals of the capacitor overvoltage protection function. Parts written in **bold** are seen on the function block in the logic editor.

With the function's update for the 2.10 system, some outputs have been renamed.

Table 2-4 The binary output status signals of the capacitor overvoltage protection function, system 2.8

BINARY OUTPUT SIGNALS	SIGNAL TITLE	EXPLANATION
CapOV_St1L1_Grl_	Start L1 – Inverse Char	Start of Stage 1 in phase L1
CapOV_St1L2_Grl_	Start L2 – Inverse Char	Start of Stage 1 in phase L2
CapOV_St1L3_Grl_	Start L3 – Inverse Char	Start of Stage 1 in phase L3
CapOV_St2L1_Grl_	Start L1 – Warning Stage	Start of Stage 2 in phase L1
CapOV_St2L2_Grl_	Start L2 – Warning Stage	Start of Stage 2 in phase L2
CapOV_St2L3_Grl_	Start L3 – Warning Stage	Start of Stage 2 in phase L3
CapOV_Trip1_Grl_	Inverse Char Trip	Trip command of Stage 1
CapOV_Trip2_Grl_	Warning Stage Trip	Trip command of Stage 2 (usually assigned as Warning)

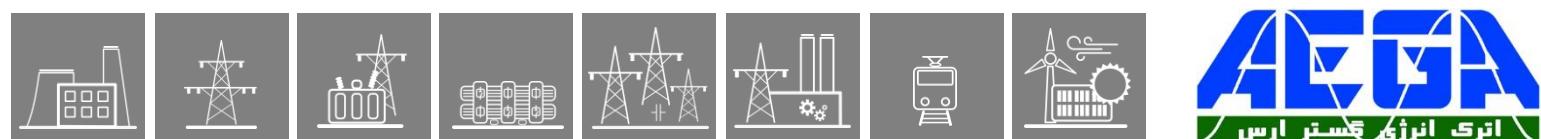


Table 2-5 The binary output status signals of the capacitor overvoltage protection function, system 2.10 and up

BINARY OUTPUT SIGNALS	SIGNAL TITLE	EXPLANATION
CapOV_StL1_Grl_	Start L1 – Inverse Char.	Start of Trip stage (Stage 1) in phase L1
CapOV_StL2_Grl_	Start L2 – Inverse Char.	Start of Trip stage (Stage 1) in phase L2
CapOV_StL3_Grl_	Start L3 – Inverse Char.	Start of Trip stage (Stage 1) in phase L3
CapOV_WarnStL1_Grl_	Start L1 – Warning Stage	Start of Warning stage (Stage 2) in phase L1
CapOV_WarnStL2_Grl_	Start L2 – Warning Stage	Start of Warning stage (Stage 2) in phase L2
CapOV_WarnStL3_Grl_	Start L3 – Warning Stage	Start of Warning stage (Stage 2) in phase L3
CapOV_Trip_Grl_	Inverse Char. Trip	Trip command of Trip stage (Stage 1)
CapOV_WarnTrip_Grl_	Warning Stage Trip	Trip command of Warning stage (Stage 2)

3.1.11.6.5. On-line data

Visible values on the on-line data page:

Table 2-6 The displayed on-line data of the capacitor overvoltage protection function

SIGNAL TITLE	DIMENSION	EXPLANATION
Start L1 – Inverse Char	-	Start of Trip stage (Stage 1) in phase L1
Start L2 – Inverse Char	-	Start of Trip stage (Stage 1) in phase L2
Start L3 – Inverse Char	-	Start of Trip stage (Stage 1) in phase L3
Inverse Char Trip	-	Trip command of Trip stage (Stage 1)
Start L1 – Warning Stage	-	Start of Warning stage (Stage 2) in phase L1
Start L2 – Warning Stage	-	Start of Warning stage (Stage 2) in phase L2
Start L3 – Warning Stage	-	Start of Warning stage (Stage 2) in phase L3
Warning Stage Trip	-	Trip command of Warning stage (Stage 2)
Current input assignment	-	Status of the graphical analogue input (if exists) (Complete if OK, Missing if not connected)

3.1.11.6.6. Events

The following events are generated in the event list, as well as sent to SCADA according to the configuration.

Table 2-7 Events of the capacitor unbalance protection function

EVENT	VALUE	EXPLANATION	IEC61850 DATA ATTRIBUTES*
Inverse Char. Start	-	Start of Trip stage (Stage 1)	CAPOVTPOV1\$ST\$Str
Warning Stage Start	-	Start of Warning stage (Stage 2)	CAPOVWPTOV1\$ST\$Str
Inverse Char. Trip	-	Trip command of Trip stage (Stage 2)	CAPOVTPOV1\$ST\$Op
Warning Stage Trip	-	Trip command of Warning stage (Stage 2)	CAPOVWPTOV1\$ST\$Op

*The IEC61850 Data Attributes can only be found in system version 2.10 and up.

3.1.11.7. Technical data

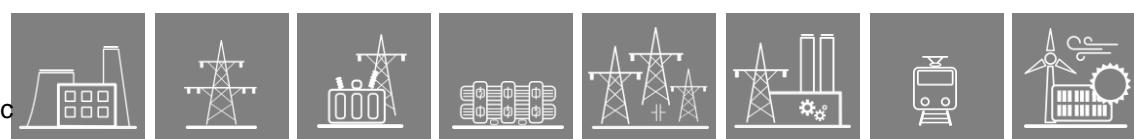
2-8 Technical data of the overvoltage protection function

FUNCTION	VALUE	ACCURACY
Pick-up starting accuracy		< 1%
Operate time accuracy	at $In=100\%$	< 5%

3.1.11.7.1. Notes for testing

Normally in the EuroProt+ devices the trip contacts are assigned to the Trip Logic function block, and not to the protection function blocks. Because of this the testing personnel must make sure that the Trip Logic is switched on ('Operation' parameter is set to other than 'Off') before starting the testing, otherwise there will be no physical trip on the relay.

Additional notes for Graphic Analogue inputs (only from firmware version 2.10.2.3010 and up):


Starting from the firmware version **2.10.2.3010**, the majority of the function blocks can be updated to be equipped with graphic analogue inputs which **allow the user to assign the functions' analogue inputs by applying the graphic equation editor**.

The analogue connections of these functions can be checked by examining the source that is connected to their inputs (just like examining the source of a logic signal).

These functions must be placed in the Logic Editor and their graphic analogue inputs must be connected to make them operate. If a connection is intact, the online status of the corresponding analogue input will show "Complete". If it is missing, the status will be "Missing" and the function will not operate.

Note that these graphical inputs do not exist in the earlier firmware/function versions (2.8.x.xxxx)! Checking and modifying the analogue assignments in these cases are done by using the EuroCAP Software Configuration menu.

3.2. Control & supervision functions

3.2.1. Phase-Selective Trip Logic

3.2.1.1. Operation principle

The phase-selective trip logic function operates according to the functionality required by the IEC 61850 standard for the “Trip logic logical node”.

3.2.1.1.1. Application

The phase-selective function is applied when one-phase trip commands might be required, mostly in distance protection applications.

The function receives the trip requirements of the protective functions implemented in the device and combines the binary signals and parameters to the outputs of the device.

The trip requirements are programmed by the user, using the graphic equation editor. The decision logic has the following aims:

- Define a minimal impulse duration even if the protection functions detect a very short time fault,
- In case of phase-to-phase faults, involve the third phase in the trip command,
- Fulfill the requirements of the automatic reclosing function to generate a three-phase trip command even in case of single-phase faults,
- In case of an evolving fault, during the evolving fault waiting time include all three phases into the trip command

3.2.1.1.2. The decision logic

The decision logic module combines the status signals and the enumerated parameter to generate the general trip command on the output module of the device.

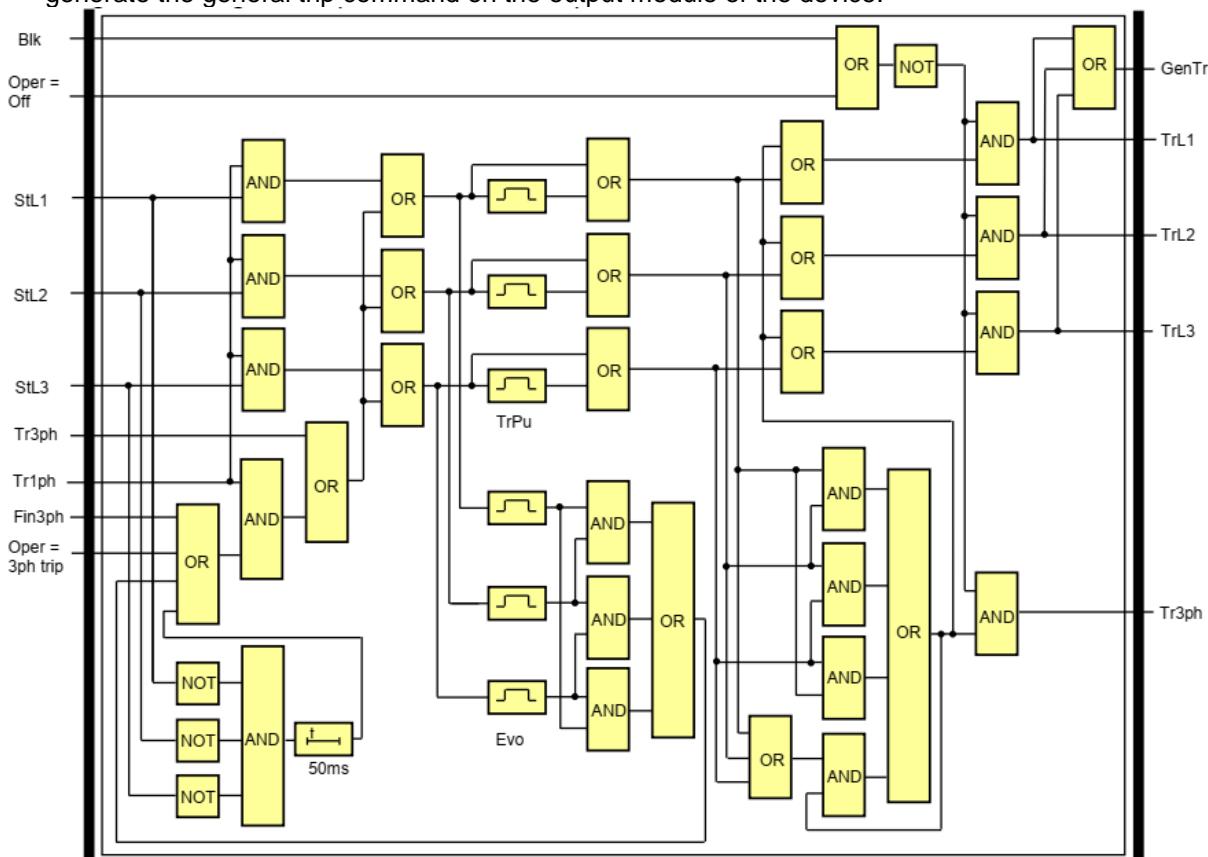
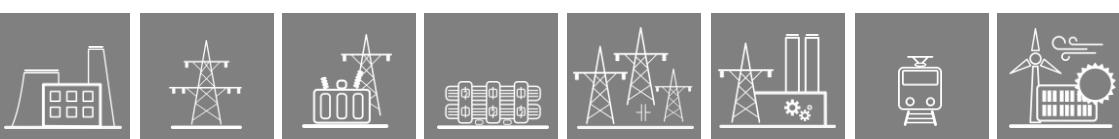



Figure 1-1 Logic scheme of the decision logic

3.2.1.2. PhSel. Trip logic function overview

The graphic appearance of the function block of the phase-selective trip logic function is shown in the figure below.

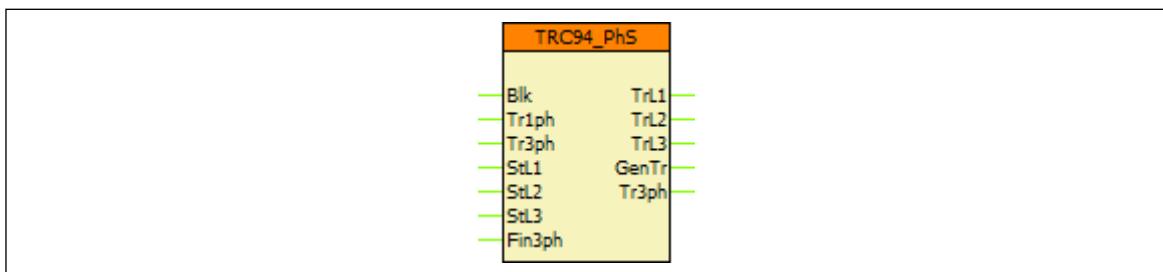


Figure 2-1 Graphic appearance of the function block of the phase-selective trip logic function

3.2.1.2.1. Settings

3.2.1.2.1.1. Parameters

TITLE	DIM	RANGE	STEP	DEFAULT	EXPLANATION
Operation	-	Off, 3ph trip, 1ph/3ph trip	-	Off	Selection of the operating mode
Min Pulse Duration	ms	50 – 60000	1	150	Minimum duration of the generated pulse
Evolving Fault Time	ms	50 – 60000	1	1000	Waiting time for evolving fault

Table 2-1 Parameters of the phase-selective trip logic function

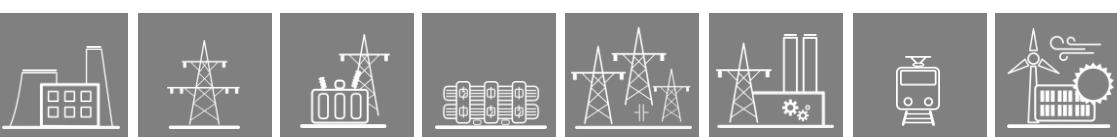
3.2.1.2.2. Function I/O

This section describes briefly the analogue and digital inputs and outputs of the function block.

3.2.1.2.2.1. Analogue inputs

This function does not have analogue inputs.

3.2.1.2.2.2. Analogue outputs (measurements)


This function does not have measurements.

3.2.1.2.2.3. Binary input signals (graphed output statuses)

The conditions of the inputs are defined by the user, applying the graphic equation editor (logic editor). The part written in **bold** is seen on the function block in the logic editor.

BINARY INPUT SIGNAL	EXPLANATION
TRC94_Blk_GrO_	Blocking the outputs of the function
TRC94_Tr1ph_GrO_	Request for single-phase trip command
TRC94_Tr3ph_GrO_	Request for three-phase trip command
TRC94_StL1_GrO_	Request for trip command in phase L1
TRC94_StL2_GrO_	Request for trip command in phase L2
TRC94_StL3_GrO_	Request for trip command in phase L3
TRC94_Fin3ph_GrO_	Forcing three-phase trip even in case of single-phase fault

Table 2-2 The binary input signals of the phase-selective trip logic function

3.2.1.2.2.4. Binary output signals (graphed input statuses)

The binary output status signals of the differential protection function. Parts written in **bold** are seen on the function block in the logic editor.

BINARY OUTPUT SIGNAL	SIGNAL TITLE	EXPLANATION
TRC94_Trl1_Grl_	Trip L1	Generated trip command for phase L1
TRC94_Trl2_Grl_	Trip L2	Generated trip command for phase L2
TRC94_Trl3_Grl_	Trip L3	Generated trip command for phase L3
TRC94_GenTr_Grl_	General Trip	Generated general trip command (active for 1ph and 3ph trips as well)
TRC94_Tr3ph_Grl_	3Ph Trip	Generated three-phase trip command

Table 2-3 The binary output signal of the phase-selective trip logic function

3.2.1.2.2.5. On-line data

Visible values on the on-line data page:

SIGNAL TITLE	DIMENSION	EXPLANATION
General Trip	-	Status of the General Trip binary output
Trip L1	-	Status of the Trip L1 binary output
Trip L2	-	Status of the Trip L2 binary output
Trip L3	-	Status of the Trip L3 binary output
3Ph Trip	-	Status of the 3Ph Trip binary output

Table 2-4 On-line data of the phase-selective trip logic function

3.2.1.2.2.6. Events

The following events are generated in the event list, as well as sent to SCADA according to the configuration.

EVENT	VALUE	EXPLANATION
Trip L1	off, on	Status of the Trip L1 binary output
Trip L2	off, on	Status of the Trip L2 binary output
Trip L3	off, on	Status of the Trip L3 binary output
General Trip	off, on	Status of the General Trip binary output

Table 2-5 Event of the phase-selective trip logic function

3.2.1.2.3. Technical data

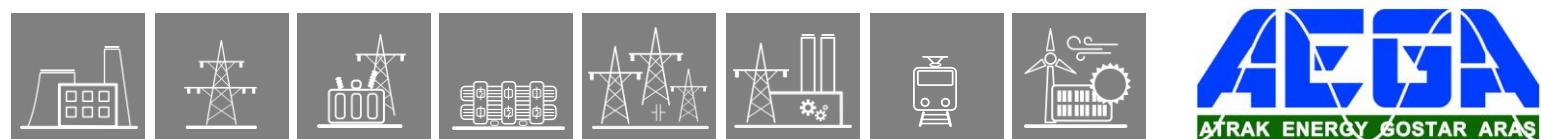
FUNCTION	VALUE	ACCURACY
Pulse time		< 3 ms

Table 2-6 The technical data of the phase-selective trip logic function

3.2.1.2.3.1. Notes for testing

When using an EuroProt+ device with phase-selective trip logic, the first 3 trip contacts of the trip module are assigned to the corresponding Trip L1-L2-L3 outputs of the Trip Logic function block. These assignments can be checked in the configuration file of the device by using the EuroCAP tool (see the picture below, note that the actual configuration might be different from that of the figure). It is possible to assign multiple contacts to one trip logic output (mainly when two trip circuits are used).

E1-Line_F


- Hardware Configuration
- Connector allocation
- LED assignment
- IO Signals
 - Analogue Inputs
 - Analogue Outputs
 - Binary Inputs
 - Binary Outputs
- Trip definition
 - Assignment
- Communication
- Software Configuration
- Subscribed GOOSE assignment
- System

Trip definition / Assignment

Add	Ix	Name	Title	Defined by	Show order	Parameters	Type
Insert	0	TripAssign1	Trip L1	RootFunctionBlock	TRC94_TripL1_TLO_TripContact_002	4444	Trip assign
Remove	1	TripAssign2	Trip L2	RootFunctionBlock	TRC94_TripL2_TLO_TripContact_004	4444	Trip assign
Modify	2	TripAssign3	Trip L3	RootFunctionBlock	TRC94_TripL3_TLO_TripContact_006	4444	Trip assign
Move Up							
Move Down							

Figure 2-2 Trip assignment in EuroCAP

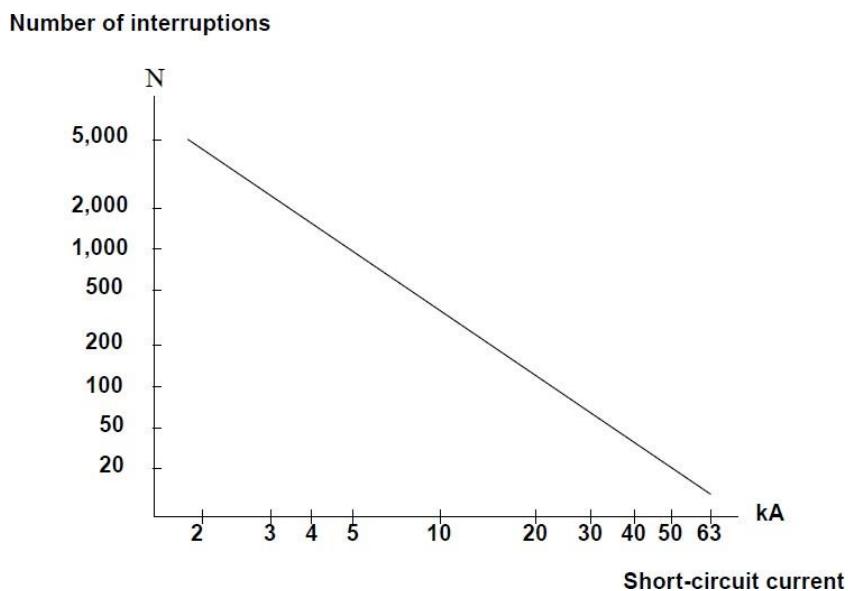
During commissioning the testing personnel must make sure that, along with the protection functions under test, the corresponding Trip Logic(s) is (are) switched on ('Operation' parameter is set to other than 'Off') before starting the testing, otherwise there will be no actual trip signal given on the assigned trip contacts.

3.2.2. Circuit breaker wear monitoring function

If a circuit breaker interrupts a current, the electric arc between the contacts results some metal loss. If the metal loss due to the burning of the electric arc becomes substantial, the contacts must be replaced.

Manufacturers define the permitted number of short circuits by formulas such as:

$$\sum_{i=1}^n I_i^k = CycNum$$


where

n = number of short circuits

k = exponent, calculated by the algorithm, based on the parameters I = short-circuit current, kA (RMS)

$CycNum$ = total value of weighted breaking currents.

Similar information is conveyed by the diagram below. This shows the number of permitted interruptions (logarithmic scaling) versus short-circuit current (logarithmic scaling) that the contacts in a circuit breaker can manage before the metal loss due to burning becomes so significant that the contacts must be replaced.

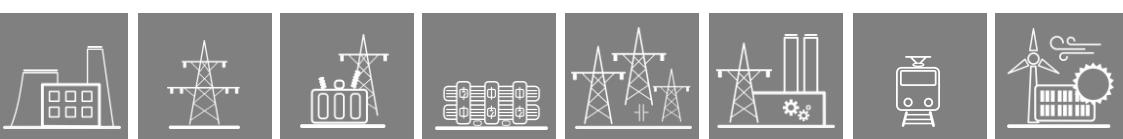


Figure 1-1 Example: Number of permitted interruptions as the function of the interrupted current

The straight line of the curve is defined by two points:

- The number of permitted interruptions of 1 kA current (CycNum - 1kA)
- The number of permitted interruptions of the rated breaking current of the circuit breaker (CycNum – I Rated Trip).

The circuit breaker wear monitoring function finds the maximum value of the phase currents of each interruption and calculates the wear caused by the operation performed. If the sum of the calculated wear reaches the limit, a warning signal is generated. This indicates the time of the required preventive maintenance of the circuit breaker.

3.2.2.1. Operation of the circuit breaker wear monitoring algorithm

The operating principle of the circuit breaker wear monitoring function is based on curves similar to the one shown in [Figure 1-1](#). With this figure, the manufacturer of the circuit breaker defines the permitted total number of current interruptions up to the subsequent preventive maintenance.

The straight line of the curve is defined by two points:

- The number of interruptions of 1 kA current, by parameter CBWear_CycNumIn_IPar_ (CycNum - 1kA)
- The number of interruptions of the rated breaking current of the circuit breaker by parameter CBWear_CycNumInTrip_IPar_ (CycNum – I Rated Trip). The rated breaking current of the circuit breaker is set by parameter CBWear_InTrCB_FPar_ (Rated Trip Current)

The circuit breaker wear monitoring function processes the Fourier basic harmonic component of the three phase currents.

The circuit breaker wear monitoring function identifies the highest value of the phase currents at each interruption.

The procedure of monitoring starts at the receipt of a trip command on the dedicated input (Trip). For the start of this procedure, the circuit breaker also needs to be in closed state. This signal is received on the dedicated binary input (CB Closed).

The procedure of identifying the maximum phase current value terminates when the current falls below the minimum current defined by the parameter CBWear_Imin_FPar_ (Min Current) AND the circuit breaker gets in open position. This signal is received on the dedicated binary input (CB Open).

The procedure also stops if the time elapsed since its start exceeds 1 s. In this case no CB wear is calculated.

Based on the characteristic defined above, the function calculates the wear caused by the operation performed. If the sum of the calculated wear reaches the limit defined by the parameter CBWear_CycNumAlm_IPar_ (CycNum - Alarm), a warning signal is generated (Alarm). This indicates the advised time of the preventive maintenance of the circuit breaker.

The accumulated “wear” of the circuit breaker is stored on non-volatile memory; therefore, the value is not lost even if the power supply of the devices is switched off.

This information is displayed among the on-line data as “Actual wear”. This counter indicates how many 1 kA equivalent switches were performed since the last maintenance (reset).

When preventive maintenance is performed, the accumulated “wear” of the circuit breaker must be reset to 0 to start a new maintenance cycle. The circuit breaker wear monitoring function offers two ways of resetting:

- Binary True signal programmed to the “Reset” input of the function
- Performing a direct command via the Commands menu of the supervising WEB browser (for details, see the “Europrot+ manual”, “Remote user interface description” document). The Command window looks like [Figure 1-2](#).

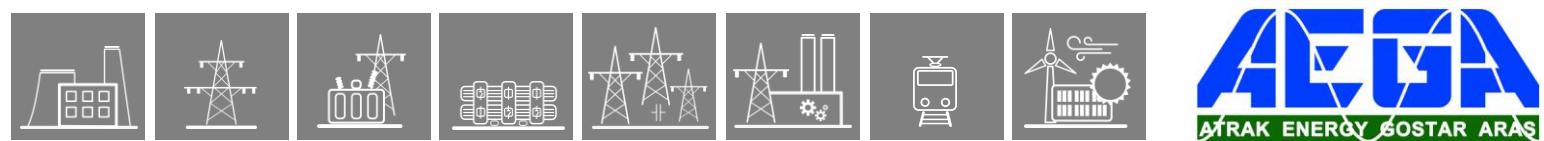


Figure 1-2 The command window to reset the CB wear counter

The **inputs** of the circuit breaker wear monitoring function are

- the Fourier components of three phase currents,
- binary inputs,
- parameters.

The **output** of the circuit breaker wear monitoring function is

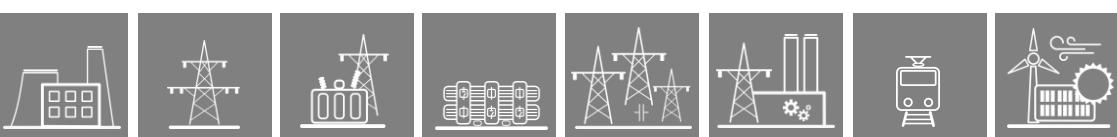
- the Alarm binary output status signal.

3.2.2.2. Technical summary

3.2.2.2.1. Technical data

Function	Range	Accuracy
Current accuracy	20 – 2000% of I_n	$\pm 1\%$ of I_n
Accuracy in tracking the theoretical wear characteristics		5%

Table 1-1 Technical data of the circuit breaker wear monitoring


3.2.2.2.2. Summary of the parameters

The parameters of the circuit breaker wear monitoring function are explained in the following tables.

Enumerated parameter

Parameter name	Title	Selection range	Default
Disabling or enabling the operation of the function			
CBWear_Oper_EPar_	Operation	Off,On	Off

Table 1-2 The enumerated parameter of the circuit breaker wear monitoring function

Integer parameters

Parameter name	Title	Unit	Min	Max	Step	Default
Permitted number of trip operation if the breaking current is 1kA						
CBWear_CycNumIn_IPar_	CycNum - 1kA		1	100000	1	50000
Permitted number of trip operation if the breaking current is InTrip (See floating parameter "Rated Trip Current")						
CBWear_CycNumInTrip_IPar_	CycNum – I Rated Trip		1	100000	1	100
Permitted level of the weighted sum of the breaking currents						
CBWear_CycNumAlm_IPar_	CycNum - Alarm		1	100000	1	50000

Table 1-3 The integer parameters of the circuit breaker wear monitoring function

Floating point parameters

Parameter name	Title	Unit	Min	Max	Step	Default
Rated breaking current of the circuit breaker						
CBWear_InTrCB_FPar_	Rated Trip Current	ka	10	100	0.01	10
Minimum level of the current below which the procedure to find the highest breaking current is stopped						
CBWear_Imin_FPar_	Min Current	ka	0.10	0.50	0.01	0.10

Table 1-4 The floating-point parameters of the circuit breaker wear monitoring function

3.2.2.2.3. Binary output status signals

The **binary output status signals** of the circuit breaker wear monitoring function.

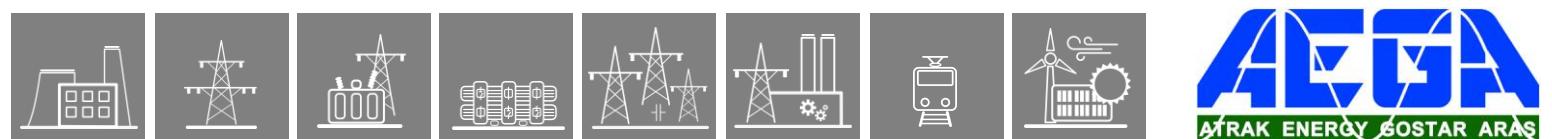

Binary output signals	Signal title	Explanation
Alarm signal of the function block		
CBWear_Alarm_Grl_	Alarm	Alarm signal is generated if the weighted sum of the breaking currents is above the permitted level

Table 1-5 The binary output status signal of the circuit breaker wear monitoring function

3.2.2.2.4. The binary input status signals

The **binary inputs** are signals influencing the operation of the circuit breaker wear monitoring function. These signals are the results of logic equations graphically edited by the user.

Binary input signals	Signal title	Explanation
Disabling the function		
CBWear_Blk_GrO_	Blk	The programmed True state of this input disables the operation of the function
Open state of the circuit breaker		
CBWear_Open_GrO_	Open	The open state of the circuit breaker is needed to stop the procedure to find the maximum breaking current
Closed state of the circuit breaker		
CBWear_Closed_GrO_	Closed	The closed state of the circuit breaker is needed to perform the procedure to find the maximum breaking current
Trip command to the circuit breaker		

CBWear_Trip_GrO_	Trip	This signal starts the procedure to find the highest breaking current
Reset command		
CBWear_Reset_GrO_	Reset	If this input is programmed to logic True, at maintenance the weighted sum of the breaking currents can be set to 0

Table 1-6 The binary input signals of the circuit breaker wear monitoring function

3.2.2.2.5. The function block

The function block of the circuit breaker wear monitoring function is shown in Figure 1-3. This block shows all binary input and output status signals that are applicable in the graphic equation editor.

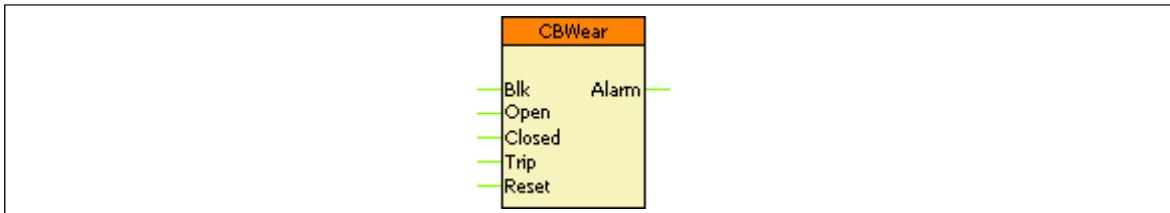


Figure 1-3 The function block of the circuit breaker wear monitoring function

3.2.3. Circuit breaker control function block

3.2.3.1. Application

The circuit breaker control block can be used to integrate the circuit breaker control of the EuroProt+ device into the station control system and to apply active scheme screens of the local LCD of the device.

3.2.3.1.1. Mode of operation

The circuit breaker control block receives remote commands from the SCADA system and local commands from the local LCD of the device, performs the prescribed checking and transmits the commands to the circuit breaker. It processes the status signals received from the circuit breaker and offers them to the status display of the local LCD and to the SCADA system.

Main features:

- Local (LCD of the device) and Remote (SCADA) operation modes can be enabled or disabled individually.
- The signals and commands of the synchro-check / synchro-switch function block can be integrated into the operation of the function block.
- Interlocking functions can be programmed by the user applying the inputs “EnaOff” and “EnaOn”, using the graphic equation editor.
- Programmed conditions can be used to temporarily disable the operation of the function block using the graphic equation editor.
- The function block supports the control models prescribed by the IEC 61850 standard.
- All necessary timing tasks are performed within the function block:
 - Time limitation to execute a command
 - Command pulse duration
 - Filtering the intermediate state of the circuit breaker
 - Checking the synchro-check and synchro-switch times
 - Controlling the individual steps of the manual commands
- Sending trip and close commands to the circuit breaker (to be combined with the trip commands of the protection functions and with the close command of the automatic reclosing function; the protection functions and the automatic reclosing function directly gives commands to the CB). The combination is made graphically using the graphic equation editor
- Operation counter
- Event reporting

3.2.3.2. Circuit Breaker control function overview

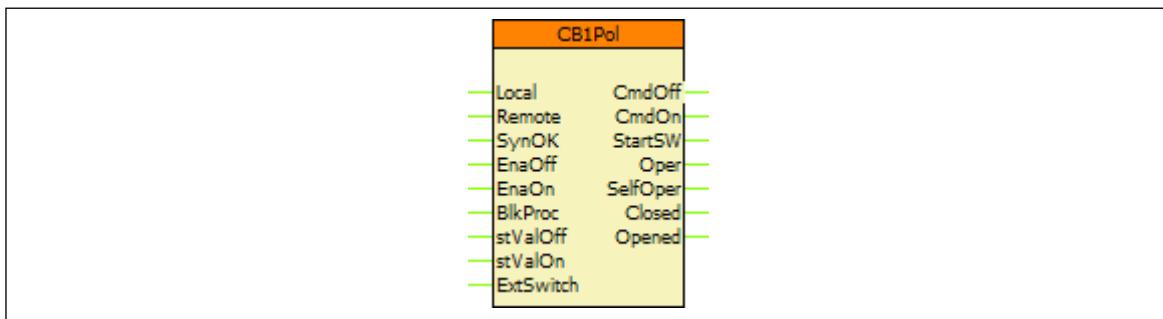


Figure 2-1 Graphic appearance of the function block of the circuit breaker control function

3.2.3.3. Settings


3.2.3.3.1. Parameters

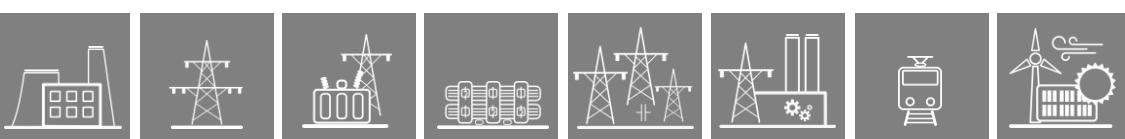
TITLE	DIM	RANGE	STEP	DEFAULT	EXPLANATION
ControlModel	-	Direct normal, Direct enhanced, SBO enhanced	-	Direct normal	The control model of the circuit breaker node according to the IEC 61850 standard
Forced Check	-	FALSE, TRUE	-	TRUE	If true, then the check function cannot be neglected by the check attribute defined by the IEC 61850 standard
Max Operating Time	ms	10 – 1000	1	200	When either enhanced control model is selected, the status of the CB must change within this time after the issued command. At timeout an invalid-position error will be generated for the client.
Pulse Duration	ms	50 – 1000	1	300	Duration of the generated On and Off impulse*
Max Intermediate Time	ms	20 – 500	1	100	Waiting time for status signals, at expiry the CB is reported to be in intermediate state
Max SynCheck Time	ms	10 – 5000	1	1000	Length of the time period to wait for the conditions of the synchronous state. After expiry of this time, the synchro-switch procedure is initiated (see synchro-check/ synchro-switch function block description)
Max SynSW Time**	ms	0 – 60000	1	0	Length of the time period to wait for the synchro-switch impulse (see synchro-check/ synchro-switch function block description). After this time the function resets, no switching is performed
SBO Timeout	ms	1000 – 20000	1	5000	Duration of the waiting time between object selection and command selection. At timeout no command is performed

* If the input status signals (stValOff, stValOn) indicate the successful switching then the pulse is withdrawn, but the minimum duration is 100 ms (factory setting).

** If this parameter is set to 0, then the "StartSW" output is not activated

Table 2-1 Parameters of the circuit breaker control function

3.2.3.3.2. Function I/O


This section describes briefly the analogue and digital inputs and outputs of the function block.

3.2.3.3.2.1. Binary input signals (graphed output statuses)

The conditions of the inputs are defined by the user, applying the graphic equation editor (logic editor). The part written in **bold** is seen on the function block in the logic editor.

BINARY INPUT SIGNAL	EXPLANATION
CB1Pol_Local_GrO_	If this input is active, the circuit breaker can be controlled using the local LCD of the device.
CB1Pol_Remote_GrO_	If this input is active, the circuit breaker can be controlled via remote communication channels of the SCADA system or the device web page ('commands' menu)
CB1Pol_SynOK_GrO_	This input indicates if the synchronous state of the voltage vectors at both sides of the circuit breaker enables the closing command. This signal is usually generated by the synchro check/ synchro switch function. If this function is not available, set the input to logic true.
CB1Pol_EnaOff_GrO_	The active state of this input enables the opening of the circuit breaker. The state is usually generated by the <i>interlocking conditions defined graphically by the user</i> .
CB1Pol_EnaOn_GrO_	The active state of this input enables the closing of the circuit breaker. The state is usually generated by the <i>interlocking conditions defined graphically by the user</i> .
CB1Pol_BlkProc_GrO_	The active state of this input blocks the operation of the circuit breaker. The conditions are defined graphically by the user.
CB1Pol_stValOff_GrO_	Off (Opened) state of the circuit breaker.
CB1Pol_stValOn_GrO_	On (Closed) state of the circuit breaker.
CB1Pol_ExtSwitch_GrO_	This signal is considered only when evaluating unintended operation (see "SelfOper" output in Chapter 2.2.2). It indicates that an external command has been issued to the circuit breaker (e.g. trip request from other protection device or external on/off command is given).

Table 2-2 The binary input signals of the circuit breaker control function

3.2.3.3.2.2. Binary output signals (graphed input statuses)

The binary output status signals of the differential protection function. Parts written in **bold** are seen on the function block in the logic editor.

BINARY OUTPUT SIGNAL	SIGNAL TITLE	EXPLANATION
CB1Pol_CmdOff_Grl_	Off Command	Off command impulse, the duration of which is defined by the parameter “Pulse duration”
CB1Pol_CmdOn_Grl_	On Command	On command impulse, the duration of which is defined by the parameter “Pulse duration”
CB1Pol_StartSW_Grl_	Start Synchro-switch	If the synchro check/synchro switch function is applied and the synchronous state conditions are not valid for the time defined by the parameter “Max.SynChk time”, then this output triggers the synchro switch function (see synchro-check/synchro-switch function block description).
CB1Pol_Oper_Grl_	Operation	An impulse with a duration of 150 ms at any operation of the circuit breaker
CB1Pol_SelfOper_Grl_	Unintended Operation	This output is logic true if the status of the circuit breaker has changed without detected command from the SCADA system or on the input “ExtSwitch”
CB1Pol_Closed_Grl_	Closed	The filtered status signal for closed state of the circuit breaker
CB1Pol_Opened_Grl_	Opened	The filtered status signal for opened state of the circuit breaker

Table 2-3 The binary output signals of the circuit breaker control function

3.2.3.3.2.3. On-line data

Visible values on the on-line data page:

SIGNAL TITLE	DIMENSION	EXPLANATION
Status	-	State of the CB (see Chapter 2.2.6)
Off Command	-	Off command impulse, the duration of which is defined by the parameter “Pulse duration”
On Command	-	On command impulse, the duration of which is defined by the parameter “Pulse duration”
Operation	-	An impulse with a duration of 150 ms at any operation of the circuit breaker
Unintended Operation	-	This output is logic TRUE if the status of the circuit breaker has changed without detected command from the SCADA system or on the input “ExtSwitch”
Opened	-	The filtered status signal for opened state of the circuit breaker
Closed	-	The filtered status signal for closed state of the circuit breaker
Operation counter	-	Resettable* counter that increments every time the Operation (see above) output gets active

*The operation counter can be reset on the device web page on-line menu.

Table 2-4 On-line data of the circuit breaker control function

3.2.3.3.2.4. Events

The following events are generated in the event list, as well as sent to SCADA according to the configuration.

EVENT	VALUE	EXPLANATION
Status	Intermediate,Off,On,Bad	CB state indication based on the received signals

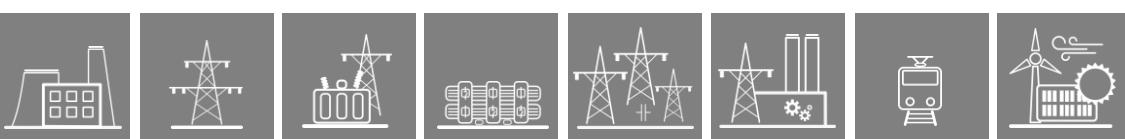
Table 2-5 Event of the circuit breaker control function

3.2.3.3.2.5. Commands

The following table contains the issuable commands of the function block. The name of the command channel is used while working in the EuroCAP configuration tool, whereas the title is seen by the user on the device web page.

COMMAND CHANNEL	TITLE	RANGE	EXPLANATION
CB1Pol_Oper_Con_	Operation	Off,On	Issue open (off) or close (on) command on the corresponding outputs of the function block

Table 2-6 The command of the circuit breaker control function


3.2.3.3.2.6. Indication of the four states (Intermediate, On, Off, Bad)

To generate an active scheme on the local LCD, there is an internal status variable indicating the state of the circuit breaker. Different graphic symbols can be assigned to the values, the function block's events are generated also according to this status variable.

This integer status has four values based on the states of the **stValOn** and **stValOff** inputs of the function block.

INTEGER STATUS	TITLE	STVALON STATE	STVALOFF STATE	VALUE	EXPLANATION
CB1Pol_stVal_ISt_	Status	FALSE	FALSE	0: Intermediate	Integer status signal for indicating the state of the CB according to the corresponding inputs of the function block
		FALSE	TRUE	1: Off	
		TRUE	FALSE	2: On	
		TRUE	TRUE	3: Bad	

Table 2-7 State signals from the circuit breaker control function

3.2.3.3.3. Technical data

FUNCTION	VALUE	ACCURACY
Pulse time		< 3 ms

Table 2-8 The technical data of the circuit breaker control function

3.2.3.3.3.1. Notes for testing

If the commands get blocked from time to time during commissioning, it is advised to check how the conditions are fulfilled to issue commands on the function block. The following **three** conditions must be fulfilled at the same time:

- Local or Remote input is active appropriately
- The enabling input (EnaOff or EnaOn) of the issued command (off or on) is active
- (close/on command only) Synchro-check is OK (SynOK input is active)

If there are no conditions to be defined for any of these three (e.g. there is no synchro-check function present, so no valid signal can be provided to that input), the corresponding input can be connected to constant logical TRUE signal provided by the fixture output of the Common function block.

3.2.3.3.3.1.1. IEC 61850 commands

In several configurations the Interlocking and Control logical nodes may have the same prefix for CB and DC function blocks (**INTCIL0#** and **SBwCSWI#** respectively where the '#' marks the instance number). This means that their instance number not necessarily corresponds to the actual function block:

- Example: if there are **2** DC and **1** CB function blocks in the same configuration where the former ones were added first, the instance number **#1** and **#2** will belong to the DC function blocks whereas number **#3** will belong to the CB function block even if it is the only CB control function in the device.
- Make sure to check which logical nodes belong to which function by checking the DOI description using the EuroCAP tool (right click the function block in the Logic editor)

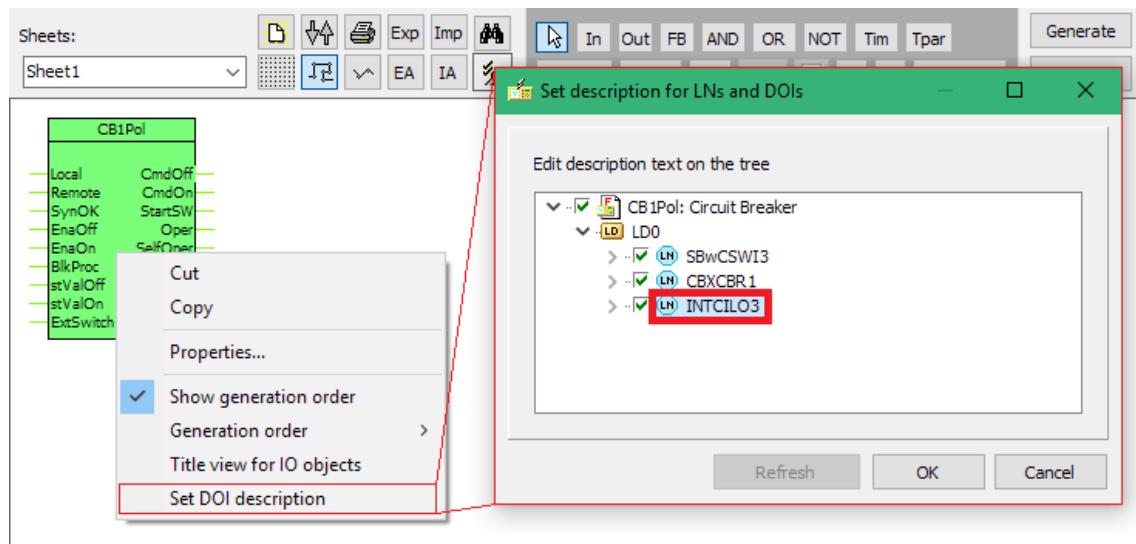


Figure 2-2 Checking the description of the Interlocking LN of the function block

In other cases, the two prefixes are given according to the type of the function block, so they are individual for each (i.e. **CBCILO#** and **BCBCSW#** for circuit breaker and **DCCILO#** and **DCCCSW#** for disconnector).

3.2.4. Disconnector control function

3.2.4.1. Application

The disconnector control block can be used to integrate the disconnector control of the EuroProt+ device into the station control system and to apply active scheme screens of the local LCD of the device.

3.2.4.1.1. Mode of operation

The disconnector control block receives remote commands from the SCADA system and local commands from the local LCD of the device, performs the prescribed checking and transmits the commands to the disconnector. It processes the status signals received from the disconnector and offers them to the status display of the local LCD and to the SCADA system.

Main features:

- Local (LCD of the device) and Remote (SCADA) operation modes can be enabled or disabled individually.
- Interlocking functions can be programmed by the user applying the inputs “EnaOff” and “EnaOn”, using the graphic equation editor.
- Programmed conditions can be used to temporarily disable the operation of the function block using the graphic equation editor.
- The function block supports the control models prescribed by the IEC 61850 standard.
- All necessary timing tasks are performed within the function block:
 - Time limitation to execute a command
 - Command pulse duration
 - Filtering the intermediate state of the disconnector
 - Controlling the individual steps of the manual commands
- Sending open and close commands to the disconnector
- Operation counter
- Event reporting

3.2.4.2. Disconnector control function overview

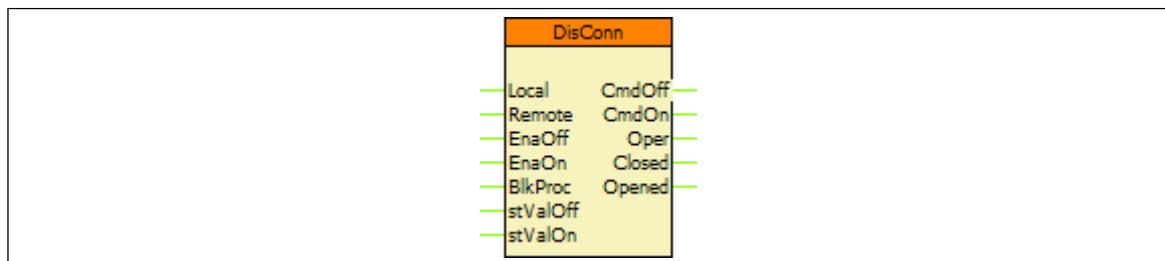


Figure 2-1 Graphic appearance of the function block of the disconnector control function

3.2.4.2.1. Settings

3.2.4.2.1.1. Parameters

TITLE	DIM	RANGE	STEP	DEFAULT	EXPLANATION
Control Model	-	Direct normal, Direct enhanced, SBO enhanced	-	Direct normal	The control model of the disconnector node according to the IEC 61850 standard
Type of Switch	-	N/A, Load Break, Disconnector, Earthing Switch, HS Earthing Switch	-	Disconnector	
Forced Check	-	FALSE, TRUE	-	TRUE	If true, then the check function cannot be neglected by the check attribute defined by the IEC 61850 standard
Max Operating Time	ms	10 – 60000	1	10000	When either enhanced control model is selected, the status of the DC must change within this time after the issued command. At timeout an invalid-position error will be generated for the client.
Pulse Duration	ms	100 – 60000	1	1000	Duration of the generated On and Off impulse*
Max Intermediate Time	ms	20 – 60000	1	10000	Waiting time for status signals, at expiry the DC is reported to be in intermediate state
SBO Timeout	ms	1000 – 20000	1	5000	Duration of the waiting time between object selection and command selection. At timeout no command is performed

* If the input status signals (stValOff, stValOn) indicate the successful switching then the pulse is withdrawn, but the minimum duration is 1000 ms (factory setting).

Table 2-1 Parameters of the disconnector control function

3.2.4.2.2. Function I/O

This section describes briefly the analogue and digital inputs and outputs of the function block.

3.2.4.2.2.1. Binary input signals (graphed output statuses)

The conditions of the inputs are defined by the user, applying the graphic equation editor (logic editor). The part written in **bold** is seen on the function block in the logic editor.

BINARY INPUT SIGNAL	EXPLANATION
DisConn_**Local**_GrO_	If this input is active, the disconnector can be controlled using the local LCD of the device.
DisConn_**Remote**_GrO_	If this input is active, the disconnector can be controlled via remote communication channels of the SCADA system or the device web page ('commands' menu)
DisConn_**EnaOff**_GrO_	The active state of this input enables the opening of the disconnector. The state is usually generated by the <i>interlocking conditions defined graphically by the user</i> .
DisConn_**EnaOn**_GrO_	The active state of this input enables the closing of the disconnector. The state is usually generated by the <i>interlocking conditions defined graphically by the user</i> .
DisConn_**BlkProc**_GrO_	The active state of this input blocks the operation of the disconnector. The conditions are defined graphically by the user.
DisConn_**stValOff**_GrO_	Off (Opened) state of the disconnector.
DisConn_**stValOn**_GrO_	On (Closed) state of the disconnector.


Table 2-2 The binary input signals of the disconnector control function

3.2.4.2.2.2. Binary output signals (graphed input statuses)

The binary output status signals of the differential protection function. Parts written in **bold** are seen on the function block in the logic editor.

BINARY OUTPUT SIGNAL	SIGNAL TITLE	EXPLANATION
DisConn_**CmdOff**_Grl_	Off Command	Off command impulse, the duration of which is defined by the parameter "Pulse duration"
DisConn_**CmdOn**_Grl_	On Command	On command impulse, the duration of which is defined by the parameter "Pulse duration"
DisConn_**Oper**_Grl_	Operation	An impulse with a duration of 150 ms at any operation of the disconnector
DisConn_**Closed**_Grl_	Closed	The filtered status signal for closed state of the disconnector
DisConn_**Opened**_Grl_	Opened	The filtered status signal for opened state of the disconnector

Table 2-3 The binary output signals of the disconnector control function

3.2.4.2.2.3. On-line data

Visible values on the on-line data page:

SIGNAL TITLE	DIMENSION	EXPLANATION
Status	-	State of the DC (see Chapter 2.2.6)
Off Command	-	Off command impulse, the duration of which is defined by the parameter “Pulse duration”
On Command	-	On command impulse, the duration of which is defined by the parameter “Pulse duration”
Operation	-	An impulse with a duration of 150 ms at any operation of the disconnector
Opened	-	The filtered status signal for opened state of the disconnector
Closed	-	The filtered status signal for closed state of the disconnector
Operation counter	-	Resettable* counter that increments every time the Operation (see above) output gets active

Table 2-4 On-line data of the disconnector control function

*The operation counter can be reset on the device web page on-line menu.

3.2.4.2.2.4. Events

The following events are generated in the event list, as well as sent to SCADA according to the configuration.

EVENT	VALUE	EXPLANATION
Status	Intermediate,Off,On,Bad	DC state indication based on the received status signals

Table 2-5 Event of the disconnector control function

3.2.4.2.2.5. Commands

The following table contains the issuable commands of the function block. The name of the command channel is used while working in the EuroCAP configuration tool, whereas the title is seen by the user on the device web page.

COMMAND CHANNEL	TITLE	RANGE	EXPLANATION
DisConn_Oper_Con_	Operation	Off,On	Issue open (off) or close (on) command on the corresponding outputs of the function block

Table 2-6 The command of the disconnector control function

3.2.4.2.2.6. Indication of the four states (Intermediate, On, Off, Bad)

To generate an active scheme on the local LCD, there is an internal status variable indicating the state of the disconnector. Different graphic symbols can be assigned to the values, the function block's events are generated also according to this status variable.

This integer status has four values based on the states of the **stValOn** and **stValOff** inputs of the function block.

INTEGER STATUS	TITLE	STVALON STATE	STVALOFF STATE	VALUE	EXPLANATION
DisConn_stVal_ISt_	Status	FALSE	FALSE	0: Intermediate	Integer status signal for indicating the state of the DC according to the corresponding inputs of the function block
		FALSE	TRUE	1: Off	
		TRUE	FALSE	2: On	
		TRUE	TRUE	3: Bad	

Table 2-7 State signals from the disconnector control function

3.2.4.2.3. Technical data

FUNCTION	VALUE	ACCURACY
Operate time		±5% or ±15 ms, whichever is greater

Table 2-8 The technical data of the disconnector control function

3.2.4.2.3.1. Notes for testing

If the commands get blocked from time to time during commissioning, it is advised to check how the conditions are fulfilled to issue commands on the function block. The following **three** conditions must be fulfilled at the same time:

- Local or Remote input is active appropriately
- The enabling input (EnaOff or EnaOn) of the issued command (off or on) is active

If there are no conditions to be defined for any of these two (e.g. there is no difference made between local/remote control), the corresponding input can be connected to constant logical TRUE signal provided by the fixture output of the Common function block.

3.2.4.2.3.1.1. IEC 61850 commands

In several configurations the Interlocking and Control logical nodes may have the same prefix for DC and CB function blocks (**INTCIL0#** and **SBwCSWI#** respectively where the '#' marks the instance number). This means that their instance number not necessarily corresponds to the actual function block:

- Example: if there are **1 CB** and **1 DC** function blocks in the same configuration where the former was added first, the instance number **#1** will belong to the CB function block whereas number **#2** will belong to the DC function block even if it is the only DC control function in the device.
- Make sure to check which logical nodes belong to which function by checking the DOI description using the EuroCAP tool (right click the function block in the Logic editor)

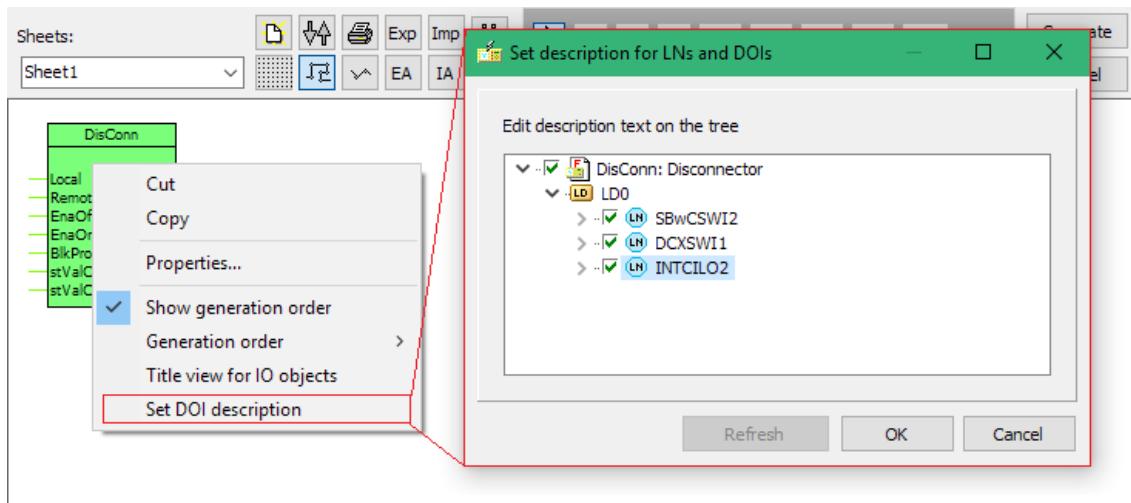


Figure 2-2 Checking the description of the Interlocking LN of the function block

In other cases, the two prefixes are given according to the type of the function block, so they are individual for each (i.e. **DCCILO#** and **DCCSW#** for disconnector and **CBCILO#** and **CBCSW#** for circuit breaker).

3.2.4.3. Example logic

A simple example can be seen below of how to insert the function block in the user logic using the EuroCAP Logic Editor:

- The Local/Remote state of the device is provided by the Common function block which is present in all configurations
- The connections to the BIn and BOut elements show the connections to the physical input and output contacts
- The highlighted signal leading to the EnaOff and EnaOn inputs is the realization of the interlocking logic. In this case the disconnector can operate only if the circuit breaker is opened.

The opened state of the CB is now indicated by its filtered 'Opened' signal which is active only if the CB is open and there is no state error (or intermediate state) of it.

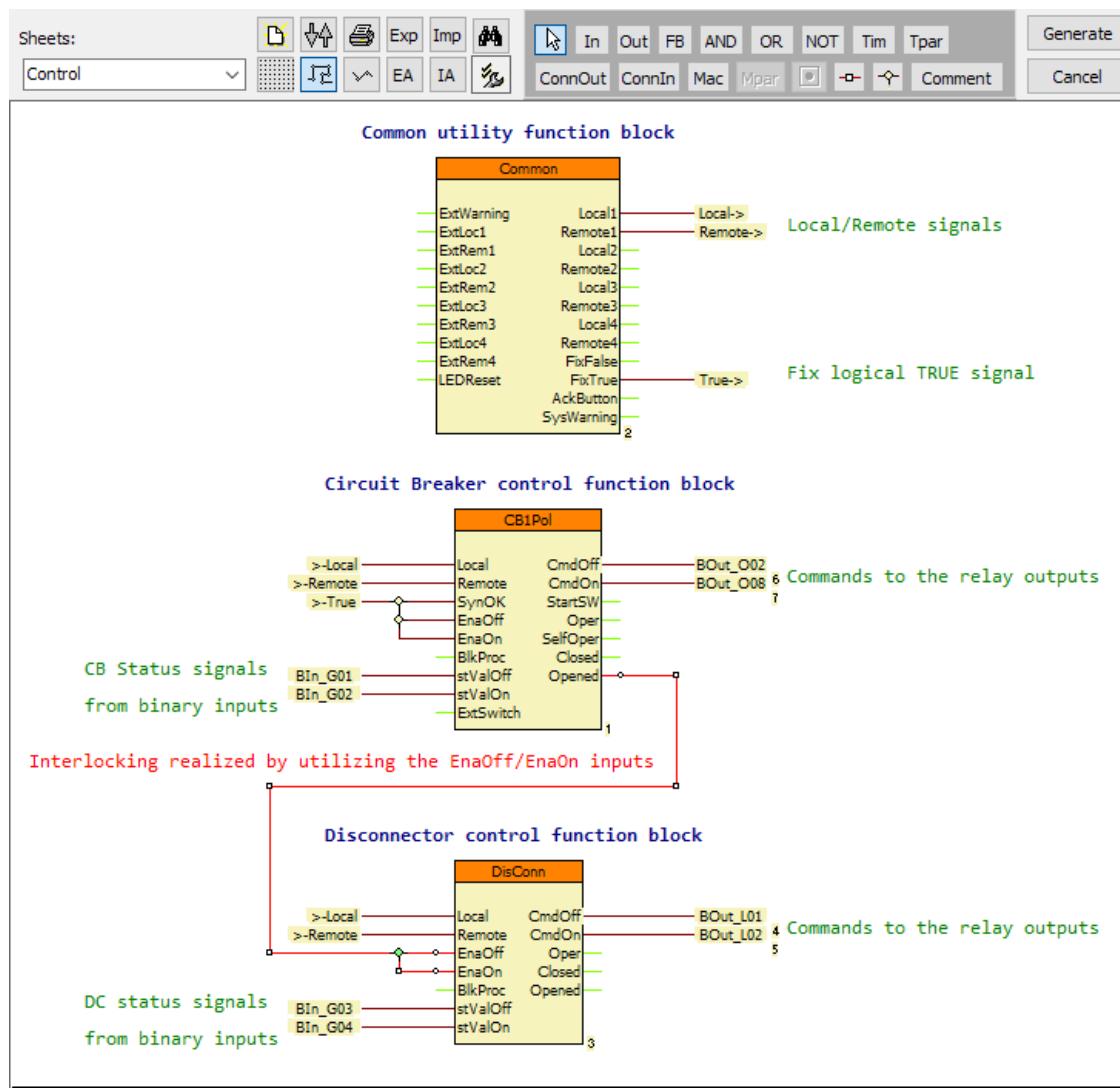


Figure 3-1 Inserting the disconnector function block into the logic (example)

3.2.5. Ethernet Links function

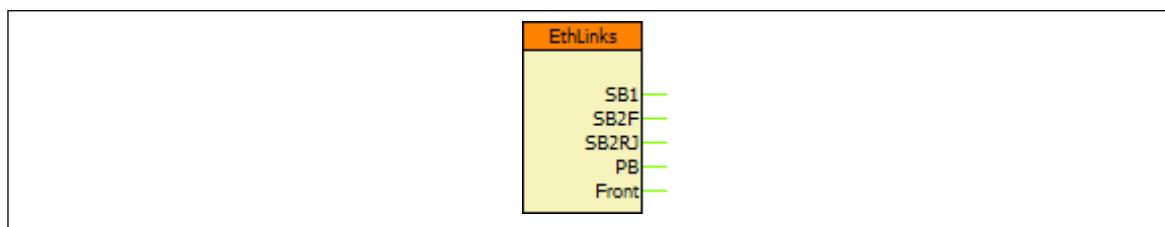
3.2.5.1. Introduction

The EuroProt+ device constantly checks the statuses of its connections to the outside world (wherever possible). These statuses can be seen on the **status/log** page in the advanced menu on the web page of the device.

When further indications are needed or the signals of the statuses (such as events, logic signals for the user logic, LEDs etc.), the Ethernet Links function block makes these available for the user.

3.2.5.1.1. Ports

The function can check the following types of communication ports:


- Fiber Optic (MM – multi mode)
- Fiber Optic (SM – single mode)
- RJ45
- PRP/HSR
- EOB (Ethernet On Board on the front HMI of the device)

See the EuroProt+ Hardware Description (different document) for the list of the CPU modules that contain any of these ports.

3.2.5.2. Ethernet Links function overview

The graphic appearance of the function block is shown on [Figure 2-1](#). These blocks show all binary input and output status signals, which are applicable in the graphic equation editor.

Figure 2-1 Graphic appearance of the function block of the ethernet links function

3.2.5.2.1. Settings

There are no settings for this function block.

3.2.5.2.2. Function I/O

This section describes briefly the analogue and digital inputs and outputs of the function block.

This function block owns only binary output signals.

3.2.5.2.2.1. Binary output signals (graphed input statuses)

The binary output status signals of the Ethernet Links function. **Parts written in bold** are seen on the function block in the logic editor.

BINARY OUTPUT SIGNAL	SIGNAL TITLE	EXPLANATION
EthLnk_ SB1 _Grl_	Station Bus1	Active if the first (upper) fiber optic port of the CPU module has an active connection.
EthLnk_ SB2F _Grl_	Station Bus2 – Fiber	Active if the second (middle) fiber optic port of the CPU module has an active connection.
EthLnk_ SB2RJ _Grl_	Station Bus2 –RJ4	Active if the RJ45 port of the CPU module has an active connection.
EthLnk_ PB _Grl_	Process Bus	Active if the third (lower) fiber optic port of the CPU module has an active connection
EthLnk_ Front _Grl_	RJ45/EOB on front panel	Active if the front RJ45 port (or EOB) has an active connection

Table 2-1 The binary output status signals of the ethernet links function

3.2.5.2.2.2. On-line data

Visible values on the on-line data page:

SIGNAL TITLE	DIMENSION	EXPLANATION
Station Bus1	-	Active if the first (upper) fiber optic port of the CPU module has an active connection.
Station Bus2 – Fiber	-	Active if the second (middle) fiber optic port of the CPU module has an active connection.
Station Bus2 –RJ4	-	Active if the RJ45 port of the CPU module has an active connection.
Process Bus	-	Active if the third (lower) fiber optic port of the CPU module has an active connection
RJ45/EOB on front panel	-	Active if the front RJ45 port (or EOB) has an active connection

Table 2-2 The measured analogue values of the ethernet links function

3.2.5.2.2.3. Events

The following events are generated in the event list, as well as sent to SCADA according to the configuration.

EVENT	VALUE	EXPLANATION
Station Bus1	off, on	Active if the first (upper) fiber optic port of the CPU module has an active connection.
Station Bus2 – Fiber	off, on	Active if the second (middle) fiber optic port of the CPU module has an active connection.
Station Bus2 –RJ4	off, on	Active if the RJ45 port of the CPU module has an active connection.
Process Bus	off, on	Active if the third (lower) fiber optic port of the CPU module has an active connection
RJ45/EOB on front panel	off, on	Active if the front RJ45 port (or EOB) has an active connection

Table 2-3 Events of the ethernet links function

3.2.5.2.3. Technical data

There is no technical data to add.

3.2.6. Trip Circuit Supervision

3.2.6.1. Introduction

This document describes the applicable hardware and provides guidelines for usage in the device configuration.

3.2.6.1.1. Operation principle

The trip circuit supervision is utilized for checking the integrity of the circuit between the trip coil and the tripping output of the protection device.

This is realized by injecting a small DC current (around 1-5 mA) into the trip circuit. If the circuit is intact, the current flows, causing an active signal to the opto coupler input of the trip contact.

The state of the input is shown on the devices' binary input listing among the other binary inputs, and it can be handled like any other of them (it can be added to the user logic, etc.)

3.2.6.1.2. Applicable modules

The following modules contain trip outputs with trip circuit supervision. The information here is restricted to the trip circuit supervision only. For more details please refer to the EuroProt+ Hardware description from which these were extracted. Note that there are other modules without trip circuit supervision, those are not listed here.

Table 1-1 Modules with Trip Circuit Supervision

MODULE TYPE	TRIP+4201	TRIP+2101	TRIP+2201	PSTP+4201	PSTP+2101
CHANNEL NUMBER	4	4	4	2	2
RATED VOLTAGE	24 V DC and 48 V DC	110 V DC	220 V DC	24 V DC and 48 V DC and 60 V DC	110 V DC and 220 V DC
THERMAL WITHSTAND VOLTAGE	72 V DC	150 V DC	242 V DC	72 V DC	242 V DC

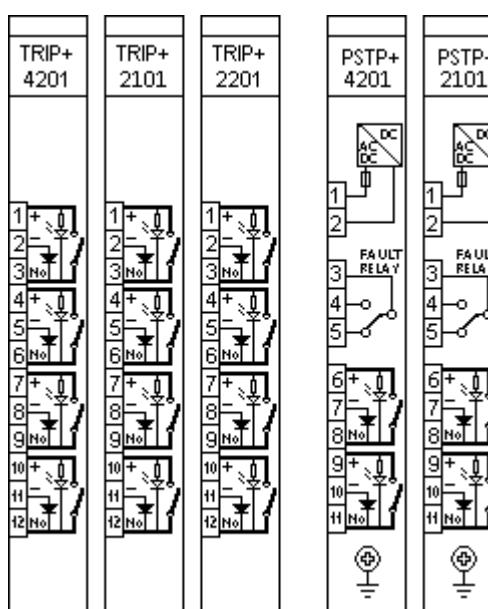


Figure 1-1 I/O arrangement of the modules with TCS

3.2.6.2. Hardware application

3.2.6.2.1. Wiring

The wiring of these modules can be 2-wire or 3-wire. The TCS – **Trip Circuit Supervision** function is active with both methods.

The voltage of the "No" contact is maximized at 15 V by a Zener-diode. Make sure that the voltage caused by the resistance of the circuit breaker and the injected current from the TRIP+ module does not reach 10 V. In case of PSCP+ modules, this voltage is 8 V (PSCP+/4201) and 13 V (PSCP+/2101).

Our TRIP+ modules are made to switch DC circuits. **Using reversed polarity or AC voltage can cause the damage of the internal circuits.**

3.2.6.2.1.1. 3-wire TRIP+ wiring methods

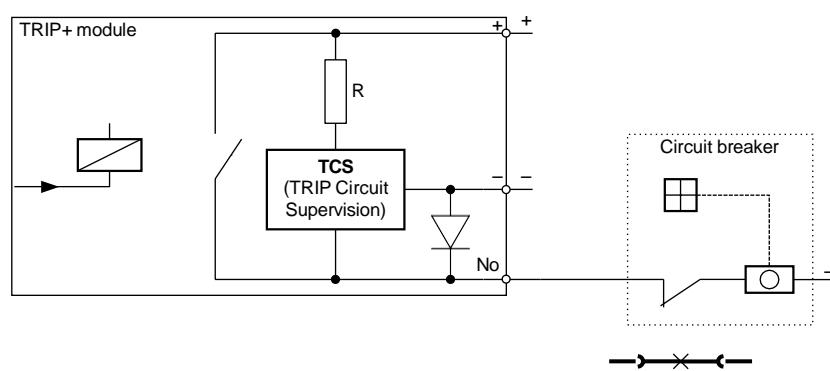


Figure 2-1 3-wire TRIP+ wiring

It is possible to use parallel connected TRIP+ modules. In this case the negative contacts must be common.

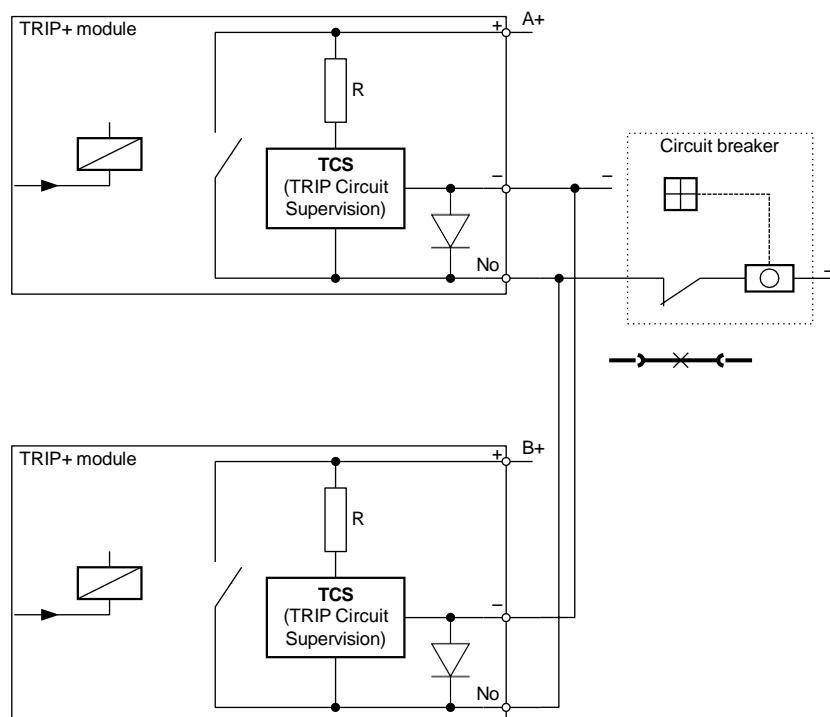


Figure 2-2 3-wire TRIP+ wiring using parallel connected TRIP+ modules

3.2.6.2.1.2. 2-wire TRIP+ wiring methods

If it is necessary, you can also wire the TRIP+ modules using only the “+” and the “No” contacts.

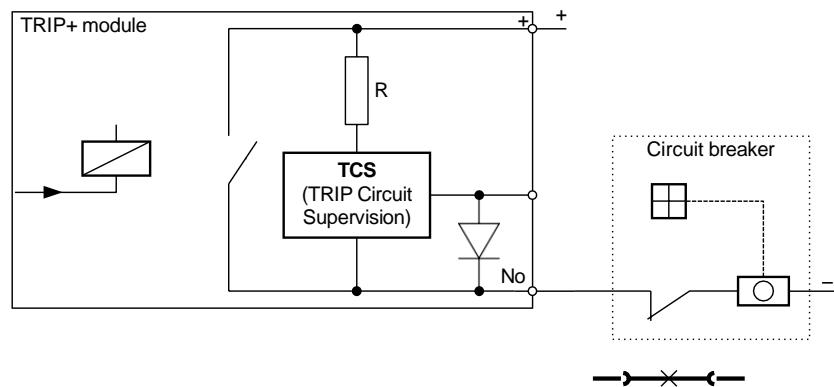


Figure 2-3 2-wire TRIP+ wiring

It is possible to use parallel connected TRIP+ modules.

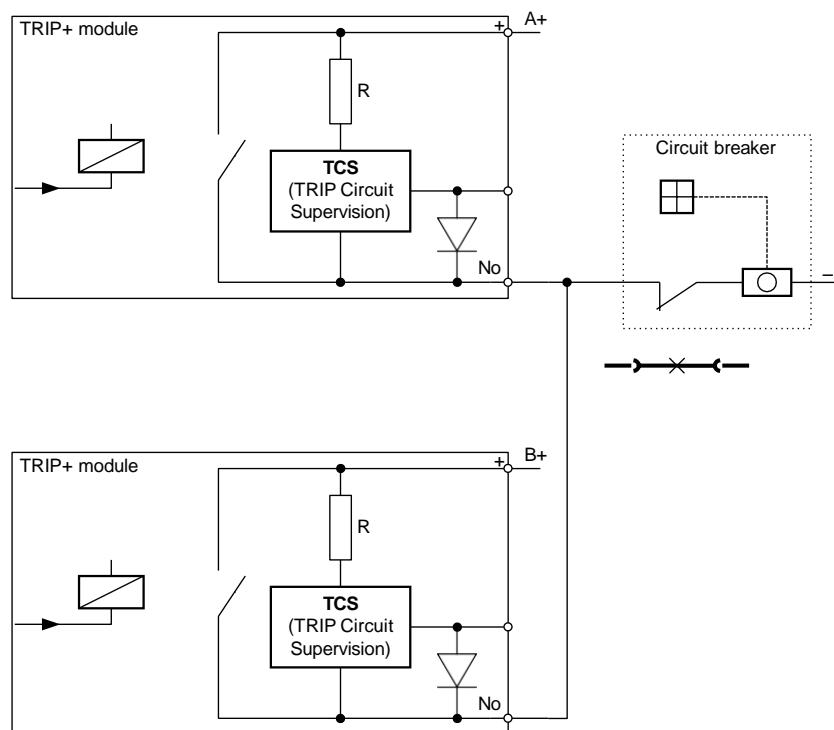


Figure 2-4 2-wire TRIP+ wiring using parallel connected TRIP+ modules

If the circuit breaker needs two-pole switching, TRIP+ modules can be connected series as you can see in Figure 2-5.

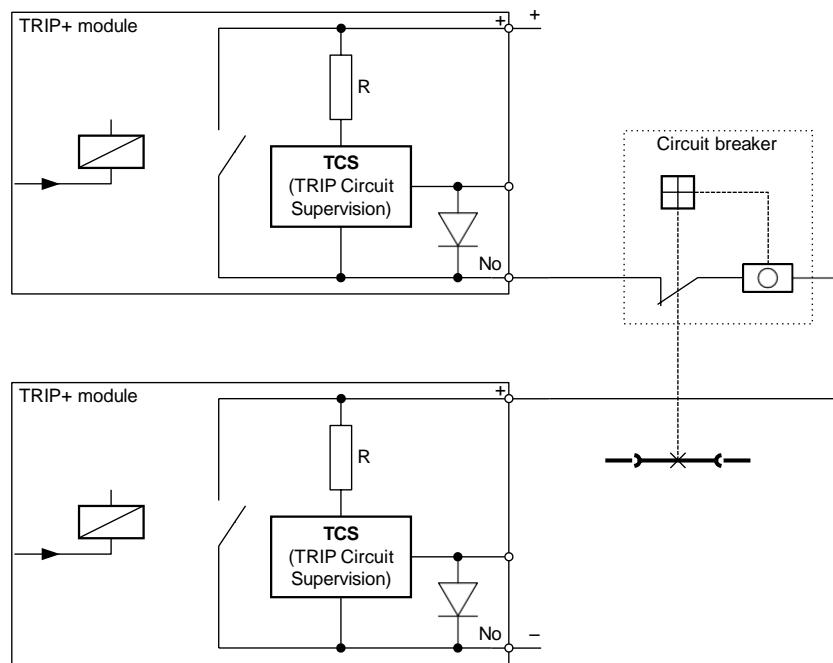
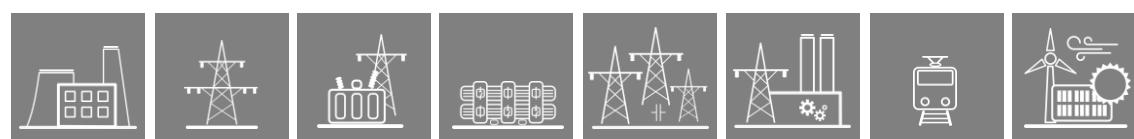


Figure 2-5 2-wire TRIP+ wiring using series connected TRIP+ modules

3.2.6.2.2. TCS signal handling

The Trip Circuit Supervision detects broken trip circuit if the current flowing through the trip coil is below 1 mA or (in case of 3-wire wirings) the voltage on it is above 8-10-13 V (depending on the module).


In Chapter 2.3 there are calculated maximum values for the resistance of the trip coil. If these values are exceeded, the TCS might consider the trip circuit broken even if it is intact.

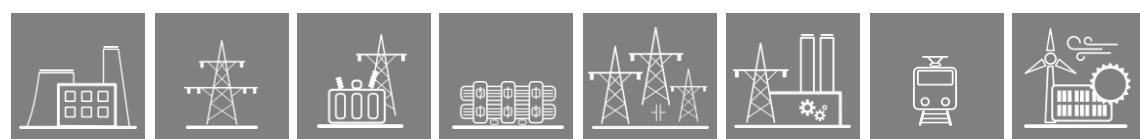
To solve this, there are two ways:

- a) **Using the 2-wire wiring method***: leaving out/disconnecting the DC- part of the TRIP wiring may solve the issue.
Note that in this case the voltage is not maximized on 15 V, so **the used voltage (up to 220 Vdc) will appear on the “NO” pin**. Caution is advised when touching the wiring in this case.
- b) **Usage of modules without TCS**: if the TCS is not a requirement (e.g. in backup protections), it can be simply left out by opting for the appropriate modules (such as PSCP+/2131 or TRIP+/21F1) while ordering.

*The inputs of some relay testers might sense the states of the Trip contacts active even if they are not. In such cases the “-“ pin must be wired in for the tests.

3.2.6.2.3. Technical data

The following tables contain information according to the wiring connections described in Chapter 2.1.


Table 2-1 Technical data for the TRIP+ modules

MODULE TYPE	TRIP+4201	TRIP+2101	TRIP+2201	
VALUE OF R RESISTOR ($\pm 10\%$)	10 k Ω	73 k Ω	130 k Ω	
INJECTED CURRENT AT "NO" CONTACT	2.4 mA @ 24 V DC 4.8 mA @ 48 V DC	1.5 mA @ 110 V DC	1.7 mA @ 220 V DC	
3-WIRE WIRING (MAX. 10 V)	11.8 kΩ @ 24 V DC 3.7 kΩ @ 48 V DC	9.7 kΩ @ 110 V DC 8.4 kΩ @ 125 V DC	8.1 kΩ @ 220 V DC	
MAXIMUM RESISTANCE OF THE TRIP COIL	3-WIRE WIRING WITH IN PARALLEL (MAX. 10 V)	5.9 kΩ @ 24 V DC 1.8 kΩ @ 48 V DC	4.8 kΩ @ 110 V DC 4.2 kΩ @ 125 V DC	4 kΩ @ 220 V DC
	2-WIRE METHOD (1 mA MIN. CURRENT)	14 kΩ @ 24 V DC 38 kΩ @ 48 V DC	37 kΩ @ 110 V DC 52 kΩ @ 125 V DC	90 kΩ @ 220 V DC

The PSTP+ modules work based on current generator principle, so the calculations for these are based on the necessary minimum current and the allowed maximum voltage.

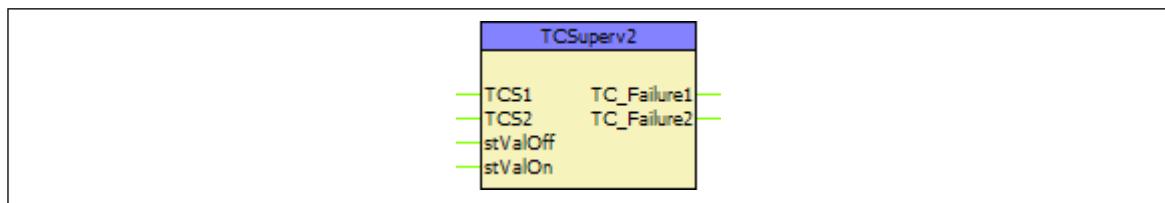
Table 2-2 Technical data for the PSTP+ modules

MODULE TYPE	PSTP+4201	PSTP+2101	
INJECTED CURRENT AT "NO" CONTACT	1.5 mA	1.5 mA	
3-WIRE WIRING (1 mA CURRENT)	8 kΩ (max. 8 V)	13 kΩ (max. 13 V)	
MAXIMUM RESISTANCE OF THE TRIP COIL	3-WIRE WIRING IN PARALLEL	4 kΩ (max. 8 V)	6.5 kΩ (max. 13 V)
	2-WIRE METHOD (1 mA MIN. CURRENT)	24 kΩ @ 24 V DC 48 kΩ @ 48 V DC 60 kΩ @ 60 V DC	110 kΩ @ 110 V DC 220 kΩ @ 220 V DC

3.2.6.3. Software application

3.2.6.3.1. Binary inputs

The **TCS input is active if the trip circuit is intact**, so the logical '0' or FALSE signal of the input means that either the trip circuit is broken, or it connects to high resistance.


The TCS signals are shown the same way as other binary inputs are in the device: they can be seen in the **on-line data** menu on the local HMI or the device web page, and they can be utilized just like any other binary input when editing the device configuration with EuroCAP software.

The names/titles of the inputs follow the occupied slot of the TRIP module (if it is in Slot **N**, the TCS contact is named **BIn_N##**).

3.2.6.3.2. The TCS macro

In most cases the trip circuit is tripped along with the circuit breaker as well. In situations like this the TCS input would signal a broken trip circuit (logical '0' or FALSE) unnecessarily. To avoid this, the status signals of the CB are to be used combined with the TCS input signal so that it will be evaluated only when the CB is closed.

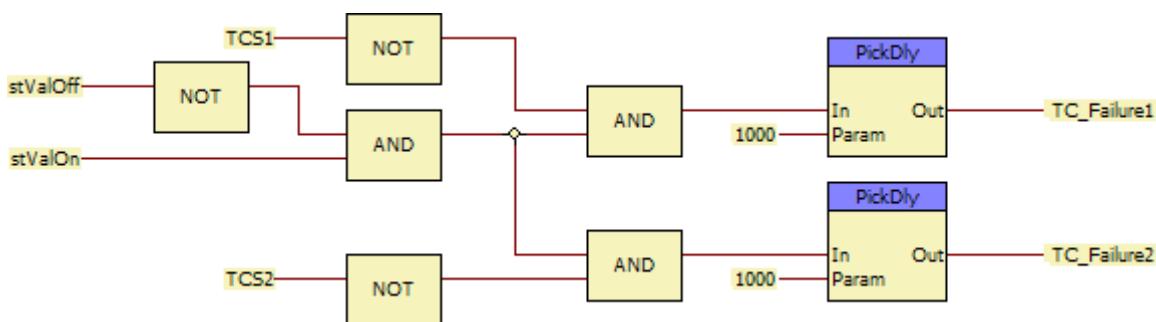

The TCS macro incorporates this logic for two separate TCS inputs for one CB (see [Figure 3-2](#) for the two TCS inputs and the CB status signal inputs). The outputs are the failure signals for each connected TCS input.


Figure 3-1 Graphic appearance of the Trip Circuit Supervision macro

The internal logic of the macro can be seen on [Figure 3-2](#) below. Both outputs have a fixed pick delay of 1000 ms. Note that **here the outputs are active if the trip circuit is broken**. For a CB with only 1 trip circuit it is enough to simply leave the **TCS2** input open (naturally in this case the **TC_Failure2** output cannot be used).

Figure 3-2 Internal logic of the Trip Circuit Supervision macro

3.2.6.3.2.1. Binary input signals

The following table explains the binary input signals of the macro.

Table 3-1 Binary input signals of the Trip Circuit Supervision macro

BINARY INPUT SIGNAL	EXPLANATION
TCS1	Connect here the first TCS binary input
TCS2	Connect here the second TCS binary input
stValOff	CB Off/Open signal
stValOn	CB On/Closed signal

3.2.6.3.2.2. Binary output signals

The following table explains the binary output signals of the macro.

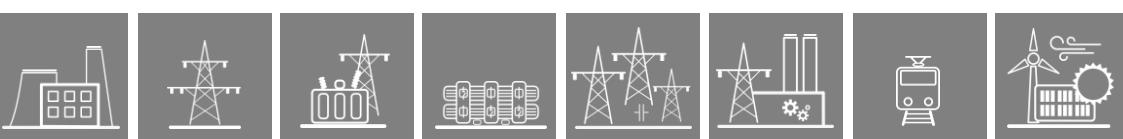
Table 3-2 Binary output signals of the Trip Circuit Supervision macro

BINARY OUTPUT SIGNAL	EXPLANATION
TC_Failure1	Failure on the first circuit
TC_Failure2	Failure on the second circuit

Note that these are the outputs of a macro, and not a function block, so they must be connected to a physical or a logical output (ConnOut, create status) to make them usable in other parts of the configuration. For further information please refer to the EuroCAP software description.

3.2.7. Dead Line Detection Function

3.2.7.1. Application


The “Dead Line Detection” (DLD) function generates a signal indicating the dead or live state of the line. Additional signals are generated to indicate if the phase voltages and phase currents are above the pre-defined limits.

3.2.7.1.1. Mode of Operation

The task of the “Dead Line Detection” (DLD) function is to decide the Dead line/Live line state.

Criteria of “Dead line” state: all three phase voltages are below the voltage setting value AND all three currents are below the current setting value.

Criteria of “Live line” state: all three phase voltages are above the voltage setting value.

3.2.7.1.2. Structure of the Algorithm

Figure 1-1 shows the structure of the dead line detection algorithm.

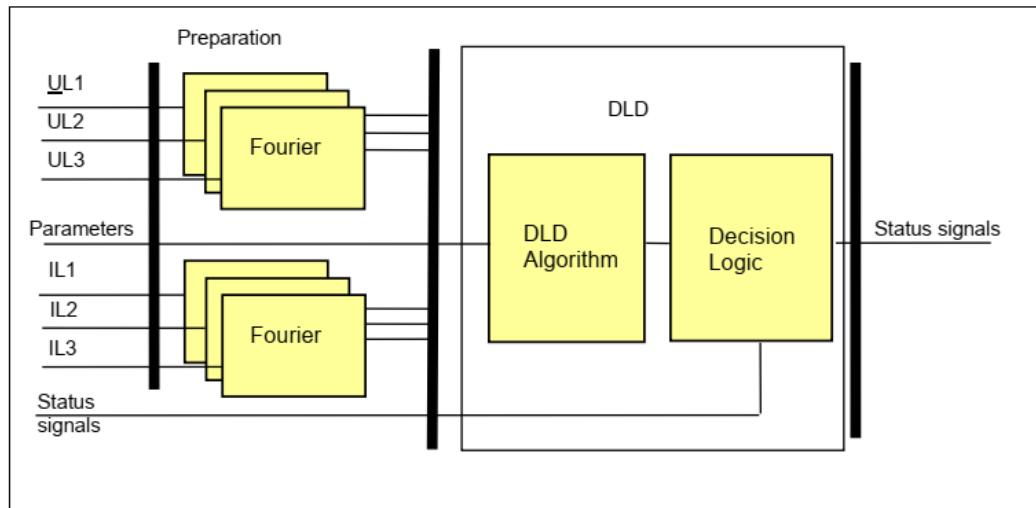


Figure 1-1 Structure of the dead line detection algorithm

For the preparation phase:

The **inputs** are

- the sampled values of the three phase voltages (UL1, UL2, UL3) and three phase currents (IL1, IL2, IL3),
- parameters.

The **outputs** are

- the fundamental Fourier components of the three phase voltages (UL1, UL2, UL3) and three phase currents (IL1, IL2, IL3).

For the DLD function:

The **inputs** are

- the fundamental Fourier components of the three phase voltages (UL1, UL2, UL3) and three phase currents (IL1, IL2, IL3),
- parameters,
- status signals.

The **software modules** of the dead line detection function are:

Fourier calculations

These modules calculate the basic Fourier components of the phase currents and phase voltages individually. These modules belong to the preparation phase.

Dead Line Detection

This module decides if the “Live line condition” (Line_OK) or the “DeadLine condition” is fulfilled.

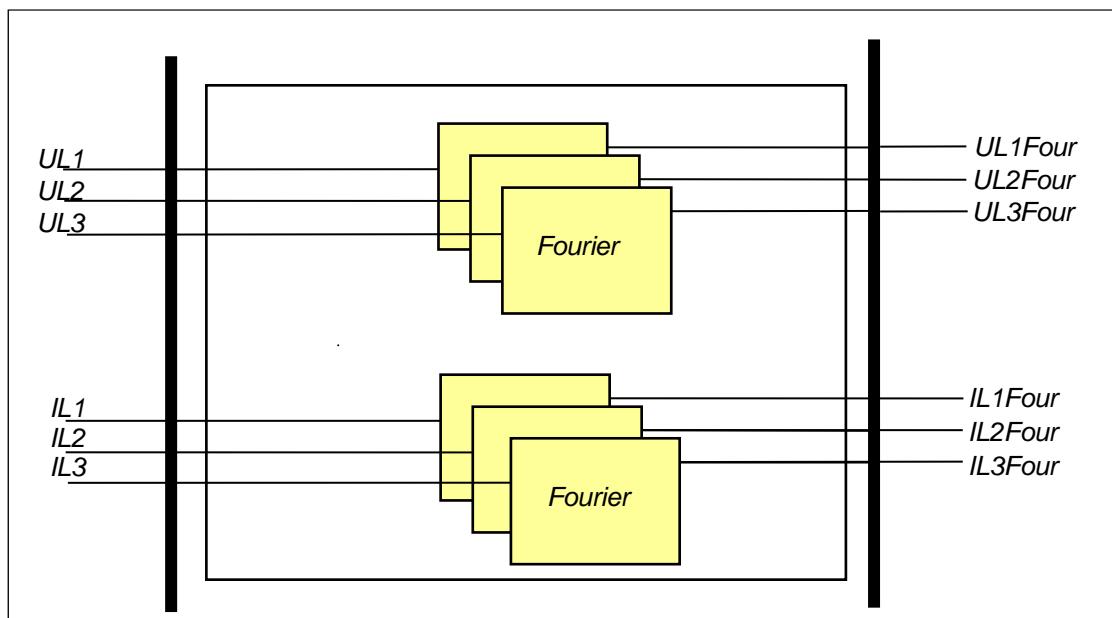
Decision logic

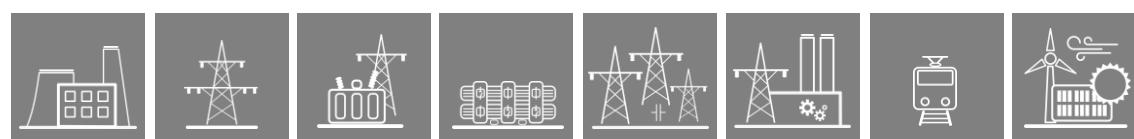
The decision logic module combines the status signals to generate the outputs of the function.

The following description explains the details of the individual components.

3.2.7.1.3. The Fourier Calculation (Fourier)

These modules calculate the basic Fourier current components of the phase voltages and phase currents individually. These modules belong to the preparation phase.




Figure 1-2 Principal scheme of the Fourier calculation

The **inputs** are the sampled values of:

- the three phase voltages (UL1, UL2, UL3)
- the three phase currents (IL1, IL2, IL3)

The **outputs** are:

- the basic Fourier components of the analyzed voltages (UL1Four, UL2Four, UL3Four),
- the basic Fourier components of the analyzed currents (IL1Four, IL2Four, IL3Four).

3.2.7.1.4. The Dead Line Detection Algorithm (Dead Line Detection)

This module decides if the “Live line condition” (Line_OK) or the “DeadLine condition” is fulfilled.

The **inputs** are

- the basic Fourier components of the phase voltages (UL1Four, UL2Four, UL3Four),
- the basic Fourier components of the phase currents (IL1Four, IL2Four, IL3Four),
- status signals,
- parameters.

The **outputs** are the internal status signals of the function. These indicate the “DeadLine condition” or the “Live line condition” (Line_OK) state.

Criteria of “Dead line” state: all three phase voltages are below the voltage setting value AND all three currents are below the current setting value.

Criteria of “Live line” state: all three phase voltages are above the voltage setting value.

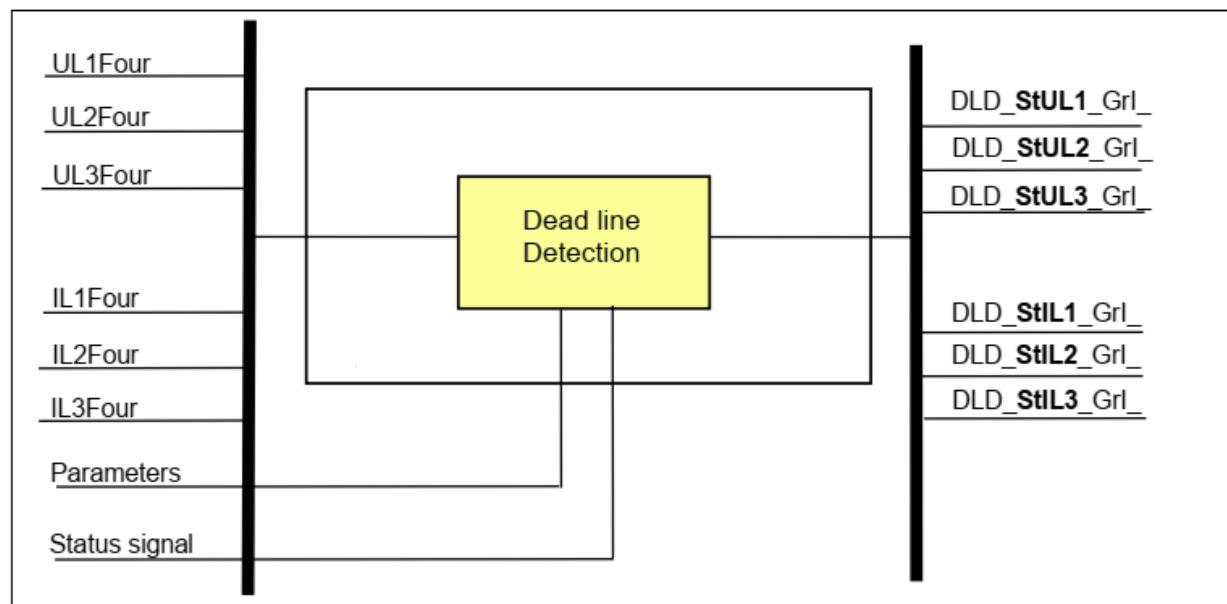


Figure 1-3 Principal scheme of the dead line detection function

Enumerated parameters

Table 1-1 The enumerated parameters of the dead line detection function

TITLE	DIM	RANGE	STEP	DEFAULT	EXPLANATION
Operation	-	Off, On	-	Off	Parameter for enabling the function

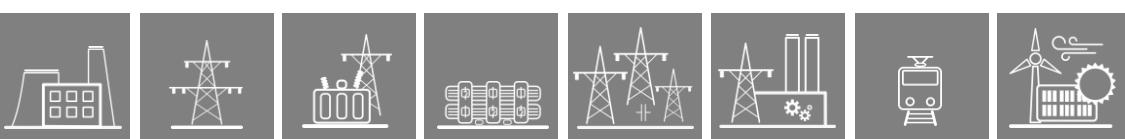
Integer parameters

Table 1-2 The integer parameters of the dead line detection function

TITLE	DIM	RANGE	STEP	DEFAULT	EXPLANATION
Min Operate Voltage	%	10 – 100	1	60	Voltage setting for “Dead line” state criteria.
Min Operate Current	%	2 – 100	1	10	Current setting for “Dead line” state criteria.

Binary status signals

The dead line detection function has a binary input signal, which serves the purpose of disabling the function. **The conditions of disabling are defined by the user, applying the graphic equation editor.**


Table 1-3 The binary input signal of the dead line detection function

BINARY STATUS SIGNAL	SIGNAL TITLE	EXPLANATION
DLD_Blk_GrO_	Block	Input used to disable the function

The **binary output status signals** of the residual dead line detection function are listed in Table 1-4.

Table 1-4 The binary output status signals of the dead line detection function

BINARY OUTPUT SIGNAL	SIGNAL TITLE	EXPLANATION
DLD_StUL1_Grl_	Start UL1	The voltage of phase L1 is above the setting limit
DLD_StUL2_Grl_	Start UL2	The voltage of phase L2 is above the setting limit
DLD_StUL3_Grl_	Start UL3	The voltage of phase L3 is above the setting limit
DLD_StIL1_Grl_	Start IL1	The current of phase L1 is above the setting limit
DLD_StIL2_Grl_	Start IL2	The current of phase L2 is above the setting limit
DLD_StIL3_Grl_	Start IL3	The current of phase L3 is above the setting limit

3.2.7.1.5. The Decision Logic (Decision logic)

The decision logic module combines status signals, binary and enumerated parameters to generate the dead line or live line status signals.

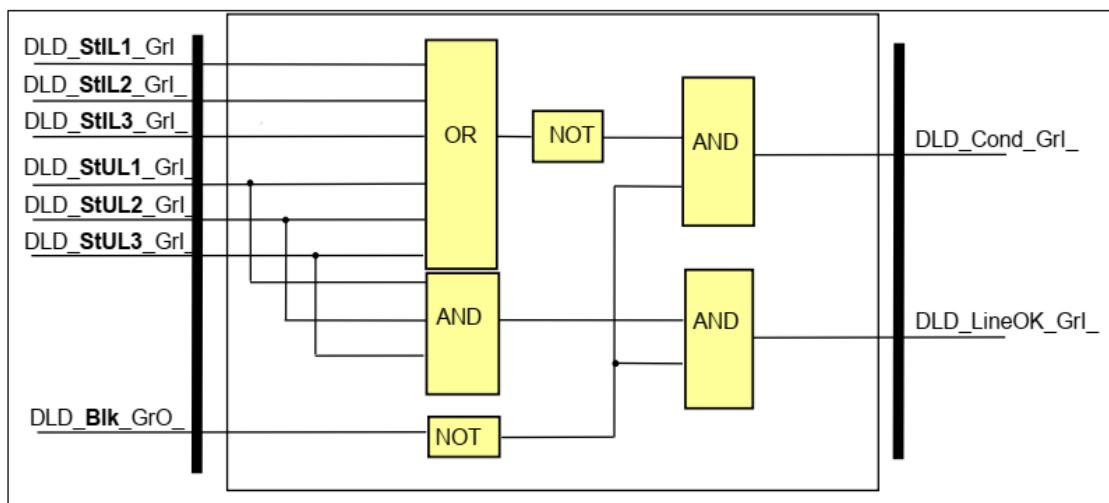


Figure 1-4 The logic scheme of the decision logic

Table 1-5 The binary input status signal of the decision logic

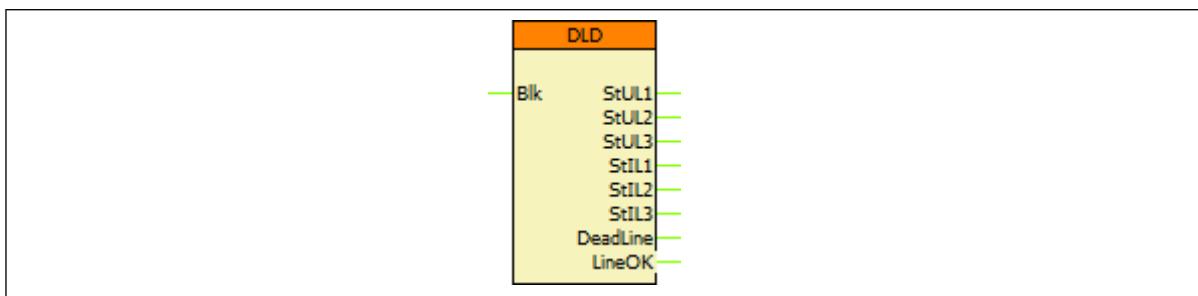
BINARY INPUT SIGNAL	SIGNAL TITLE	EXPLANATION
DLD_StUL1_Grl_	Start UL1	The voltage of phase L1 is above the setting limit
DLD_StUL2_Grl_	Start UL2	The voltage of phase L2 is above the setting limit
DLD_StUL3_Grl_	Start UL3	The voltage of phase L3 is above the setting limit
DLD_StIL1_Grl_	Start IL1	The current of phase L1 is above the setting limit
DLD_StIL2_Grl_	Start IL2	The current of phase L2 is above the setting limit
DLD_StIL3_Grl_	Start IL3	The current of phase L3 is above the setting limit

Binary status signals


The function has a binary input signal, which serves the purpose of disabling the function. **The conditions of disabling are defined by the user, applying the graphic equation editor.**

Table 1-6 The binary input signal of the dead line detection function

BINARY STATUS SIGNAL	SIGNAL TITLE	EXPLANATION
DLD_Blk_GrO_	Block	Input for disabling the function

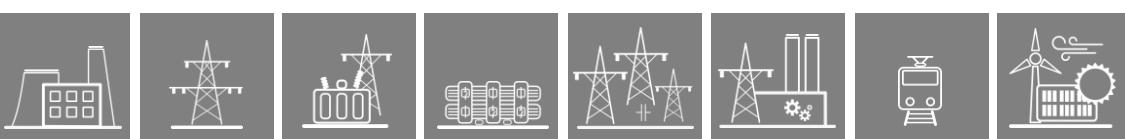

Table 1-7 The binary output status signals of the dead line detection function

BINARY OUTPUT SIGNAL	SIGNAL TITLE	EXPLANATION
DLD_DeadLine_Grl_	DeadLine condition	The requirements of “DeadLine condition” are fulfilled
DLD_LineOK_Grl_	LineOK condition	The requirements of “Live line condition” (LineOK) are fulfilled

3.2.7.2. DeadLine Detection Function Overview

The graphic appearance of the dead line detection function block is shown in [Figure 2-1](#). This block shows all binary input and output status signals that are applicable in the graphic equation editor.

Figure 2-1 The function block of the residual instantaneous overcurrent protection


3.2.7.2.1. Settings

3.2.7.2.1.1. Parameters

The available parameters are listed below in order of their appearance in the *parameters* menu. If the setting range of a parameter should be extended, contact Protecta Support.

Table 2-1 Parameters of the dead line detection function

TITLE	DIM	RANGE	STEP	DEFAULT	EXPLANATION
Operation	-	Off, On	-	Off	Parameter for enabling the function
Min Operate Voltage	%	10 – 100	1	60	Voltage setting for “Dead line” state criteria.
Min Operate Current	%	2 – 100	1	10	Current setting for “Dead line” state criteria.

3.2.7.2.2. Function I/O

This section briefly describes the analogue and digital inputs and outputs of the function block.

3.2.7.2.2.1. Analogue inputs

The analog inputs are the sampled values of the three phase voltages and the three phase currents.

3.2.7.2.2.2. Binary input signals (graphed output statuses)

The conditions of the binary inputs are defined by the user, applying the graphic equation editor (*Logic Editor*). Parts written in **bold** are seen on the left side of the function block in the *Logic Editor*.

Table 2-2 The binary input signals of the dead line detection function

BINARY INPUT SIGNAL	SIGNAL TITLE	EXPLANATION
DLD_Blk_GrO_	Block	Input for disabling the function

3.2.7.2.2.3. Binary output signals (graphed input statuses)

These signals can be used in EuroCAP to assign to LED, user LCD object etc. Parts written in **bold** are seen on the right side of the function block in the *Logic Editor*.

Table 2-3 The binary output signals of the dead line detection function

BINARY OUTPUT SIGNAL	SIGNAL TITLE	EXPLANATION
DLD_StUL1_Grl_	Start UL1	The voltage of phase L1 is above the setting limit
DLD_StUL2_Grl_	Start UL2	The voltage of phase L2 is above the setting limit
DLD_StUL3_Grl_	Start UL3	The voltage of phase L3 is above the setting limit
DLD_StIL1_Grl_	Start IL1	The current of phase L1 is above the setting limit
DLD_StIL2_Grl_	Start IL2	The current of phase L2 is above the setting limit
DLD_StIL3_Grl_	Start IL3	The current of phase L3 is above the setting limit
DLD_DeadLine_Grl_	DeadLine condition	The requirements of “DeadLine condition” are fulfilled
DLD_LineOK_Grl_	LineOK condition	The requirements of “Live line condition” (LineOK) are fulfilled

3.2.7.2.2.4. Online data

The following values are visible in the *online data* page.

Table 2-4 Online data of the dead line detection function

SIGNAL TITLE	DIMENSION	EXPLANATION
DeadLine condition	-	The requirements of “DeadLine condition” are fulfilled
LineOK condition	-	The requirements of “Live line condition” are fulfilled

3.2.7.2.2.5. Events

There are no events generated for this function block.

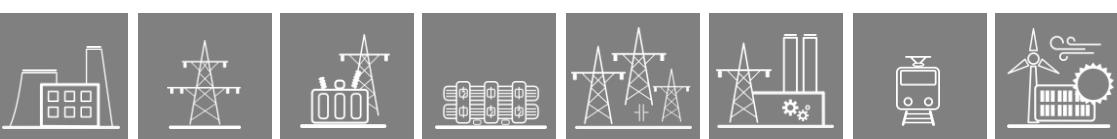

3.2.7.2.3. Technical Data

Table 2-5 Technical data of the dead line detection function

FUNCTION	VALUE	ACCURACY
Pick-up voltage		1%
Operation time	< 20 ms	
Reset ratio	0.95	

3.2.7.2.4. Notes for Testing

This function does not generate events on its own. To create them, another function block, the GGIO16 custom event function block must be utilized, see its description for more information.

3.2.8. Voltage transformer supervision function

The voltage transformer supervision function generates a signal to indicate an error in the voltage transformer secondary circuit. This signal can serve, for example, as a warning, indicating disturbances in the measurement, or it can disable the operation of the distance protection function if appropriate measured voltage signals are not available for a distance decision.

The voltage transformer supervision function is designed to detect faulty asymmetrical states of the voltage transformer circuit caused, for example, by a broken conductor in the secondary circuit.

(Another method for detecting voltage disturbances is the supervision of the auxiliary contacts of the miniature circuit breakers in the voltage transformer secondary circuits. This function is not described here.)

The user has to generate graphic equations for the application of the signal of this voltage transformer supervision function.

This function is interconnected with the “dead line detection function”. Although the dead line detection function is described fully in a separate document, the explanation necessary to understand the operation of the VT supervision function is repeated also in this document.

3.2.8.1. Mode of operation

3.2.8.1.1. “Dead line detection” (DLD) function - modes of operation

The voltage transformer supervision function is based on the “Dead line detection” (DLD) function, the task of which is to decide the Dead line/Live line state.

Criteria of “Dead line” state: all three phase voltages are below the preset voltage value AND all three currents are below the preset current value.

Criteria of “Live line” state: all three phase voltages are above the preset voltage value.

The dead line detection function is described in a separate document.

3.2.8.1.2. “Voltage transformer supervision” (VTS) function - modes of operation

The voltage transformer supervision function can be used in three different modes of application:

Zero sequence detection (for typical applications in systems with grounded neutral): “VT failure” signal is generated if the residual voltage ($3U_0$) is above the preset voltage value AND the residual current ($3I_0$) is below the preset current value.

Negative sequence detection (for typical applications in systems with isolated or resonant grounded (Petersen) neutral): “VT failure” signal is generated if the negative sequence voltage component (U_2) is above the preset voltage value AND the negative sequence current component (I_2) is below the preset current value.

Special application: “VT failure” signal is generated if the residual voltage ($3U_0$) is above the preset voltage value AND the residual current ($3I_0$) AND the negative sequence current component (I_2) are below the preset current values.

3.2.8.1.3. Activating the VTS function

The voltage transformer supervision function can be activated if “Live line” status is detected for at least 200 ms. This delay avoids mal-operation at line energizing if the poles of the circuit breaker make contact with a time delay. The function is set to be inactive if “Dead line” status is detected.

If the conditions specified by the selected mode of operation are fulfilled (for at least 4 milliseconds) then the voltage transformer supervision function is activated and the operation signal is generated. (When evaluating this time delay, the natural operating time of the applied Fourier algorithm must also be considered.)

NOTE: For the operation of the voltage transformer supervision function the “Dead line detection function” must be operable as well: it must be enabled by binary parameter setting, and its blocking signal may not be active.

3.2.8.1.4. Resetting the VTS function

If, in the active state, the conditions for operation are no longer fulfilled, the resetting of the function depends on the mode of operation of the primary circuit:

- If the “Live line” state is valid, then the function resets after approx. 200 ms of time delay. (When evaluating this time delay, the natural operating time of the applied Fourier algorithm must also be considered.)
- If the “Dead line” state is started and the “VTS Failure” signal has been continuous for at least 100 ms, then the “VTS failure” signal does not reset; it is generated continuously even when the line is in a disconnected state. Thus, the “VTS Failure” signal remains active at reclosing.
- If the “Dead line” state is started and the “VTS Failure” signal has not been continuous for at least 100 ms, then the “VTS failure” signal resets.

3.2.8.2. Structure of the voltage transformer supervision algorithm

Fig.1-1 shows the structure of the voltage transformer supervision (VTS) algorithm.

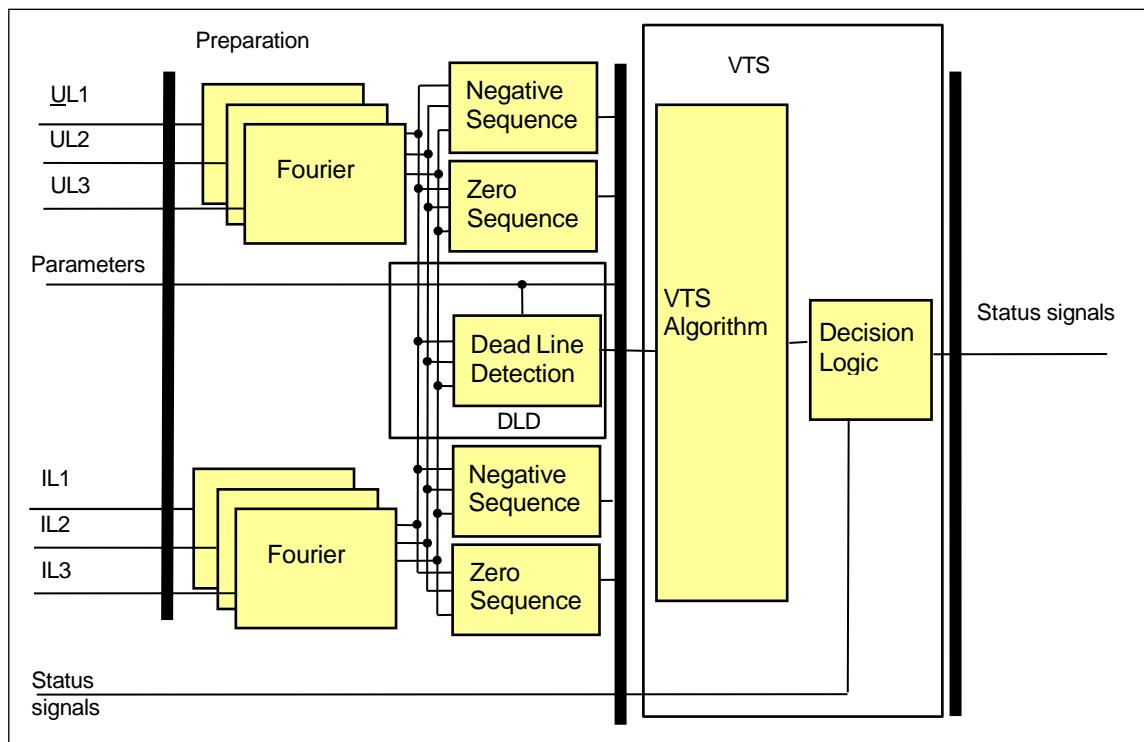


Figure 1-1 Structure of the voltage transformer supervision algorithm

For the preparation phase:

The **inputs** are

- the sampled values of the three phase voltages (UL1, UL2, UL3) and three phase currents (IL1, IL2, IL3),
- parameters.

The **outputs** are

- negative and zero sequence voltage and current components.
- signals indicating the “Live line” or “Dead line” condition.

For the VTS function:

The **inputs** are

- negative and zero sequence voltage and current components.
- signals indicating the “Live line” or “Dead line” condition,
- parameters,
- status signals.

The **outputs** are

- the binary output status signal indicating a failure of the voltage transformer secondary circuit,
- signals indicating the “Live line” or “Dead line” condition.

The **software modules** of the voltage transformer supervision function and those of the preparation phase:

Fourier calculations

These modules calculate the basic Fourier current components of the phase voltages and currents. These modules belong to the preparation phase.

Negative sequence

This module calculates the basic Fourier current components of the negative sequence voltage and current, based on the Fourier components of the phase voltages and currents. This module belongs to the preparation phase.

Zero sequence

This module calculates the basic Fourier voltage and current components of the residual voltage ($3U_0$) and current ($3I_0$), based on the Fourier components of the phase voltages and currents. This module belongs to the preparation phase.

Dead Line Detection

This module decides if the “Line_OK condition” or the “DeadLine condition” is fulfilled. This module belongs to the preparation phase.

VTS algorithm

This module decides if the “VTS_FAIL” conditions are fulfilled according to the conditions specified for the selected mode.

Decision logic

The decision logic module combines the status signals to generate the trip command of the function.

The following description explains the details of the individual components.

3.2.8.3. The Fourier calculation (Fourier)

These modules calculate the basic Fourier current components of the phase voltages and phase currents individually. These modules belong to the preparation phase.

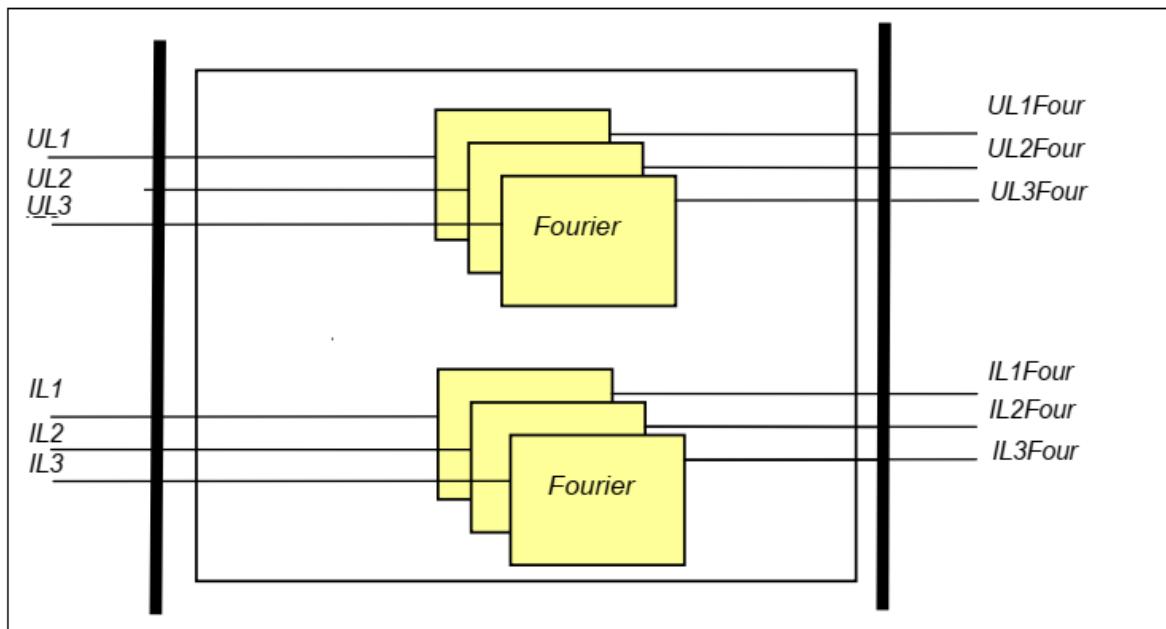


Figure 1-2 Principal scheme of the Fourier calculation

The **inputs** are the sampled values of:

- the three phase voltages (UL1, UL2, UL3)
- the three phase currents (IL1, IL2, IL3)

The **outputs** are

- the basic Fourier components of the analyzed voltages (UL1Four, UL2Four, UL3Four),
- the basic Fourier components of the analyzed currents (IL1Four, IL2Four, IL3Four).

3.2.8.4. The negative phase sequenc calculation (Negative sequence)

This module calculates the negative phase sequence components based on the Fourier components of the phase voltages and phase currents. These modules belong to the preparation phase.

The **inputs** are the basic Fourier components of the phase voltages and phase currents (UL1Four, UL2Four, UL3Four, IL1Four, IL2Four, IL3Four).

The **outputs** are

- the basic Fourier components of the negative sequence voltage component (UNegFour),
- the basic Fourier components of the negative sequence current component (INegFour).

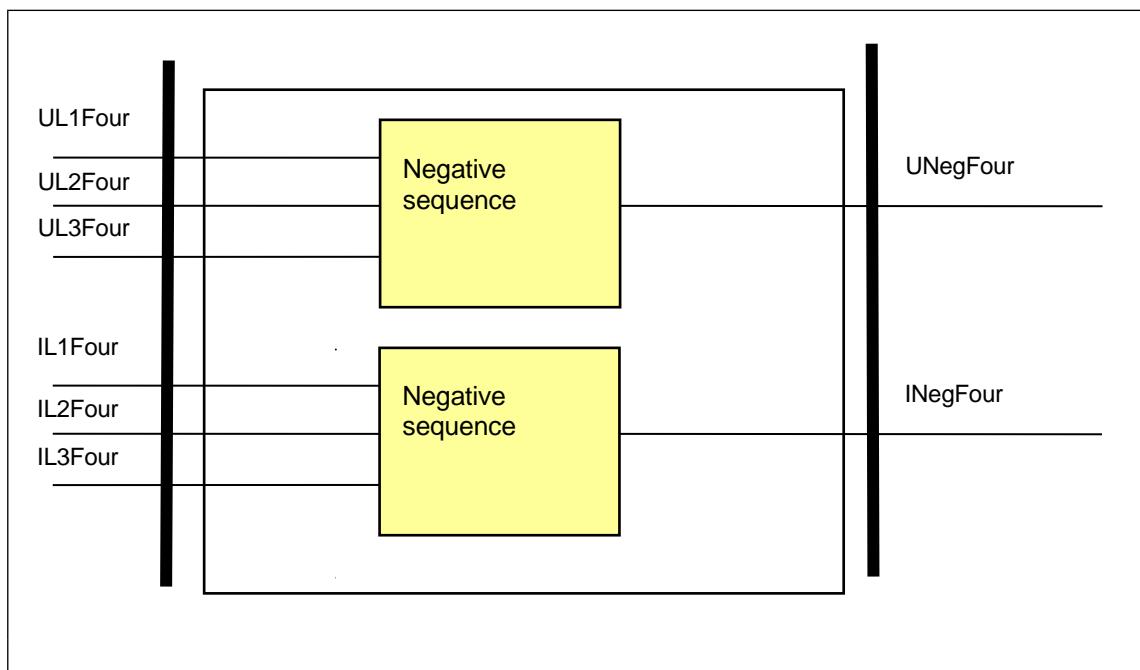
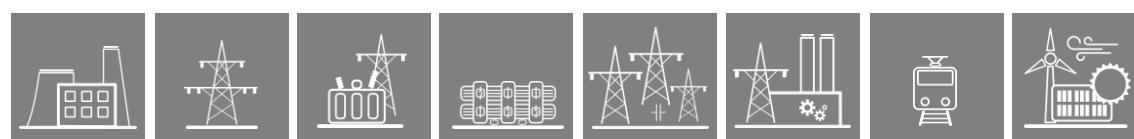



Figure 1-3 Schema of the negative sequence component calculation

3.2.8.5. The residual voltage and current calculation (Zero sequence)

This module calculates the residual voltage (UZerFour) and current (IZerFour) based on the Fourier components of the phase voltages and currents. These modules belong to the preparation phase.

The **inputs** are

- the basic Fourier components of the phase voltages (UL1Four, UL2Four, UL3Four),
- the basic Fourier components of the phase currents (IL1Four, IL2Four, IL3Four).

The **outputs** are

- the basic Fourier components of the residual voltage (UZerFour),
- the basic Fourier components of the residual current (IZerFour).

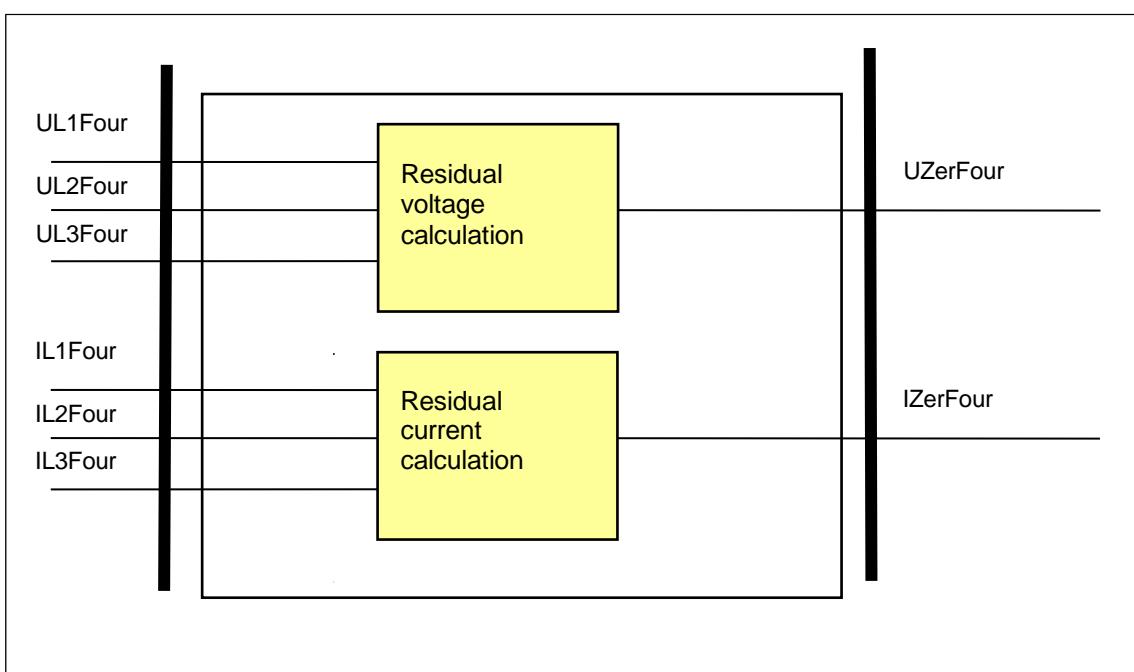
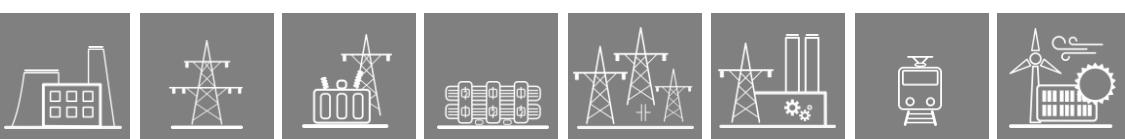



Figure 1-4 Schema of the residual voltage and current calculation

3.2.8.6. The dead line detection algorithm (Dead Line Detection)

This module decides if the “Line_OK condition” or the “DeadLine condition” is fulfilled. This module belongs to the preparation phase.

The **inputs** are

- the basic Fourier components of the phase voltages (UL1Four, UL2Four, UL3Four),
- the basic Fourier components of the phase currents (IL1Four, IL2Four, IL3Four),
- parameters.

The **outputs** are the internal status signals of the function. These indicate the “DeadLine condition state” or the “Line_OK conditions” state. This module belongs to the preparation phase.

Criteria of “Dead line” state: all three phase voltages are below the voltage setting value AND all three currents are below the current setting value.

Criteria of “Live line” state: all three phase voltages are above the voltage setting value.

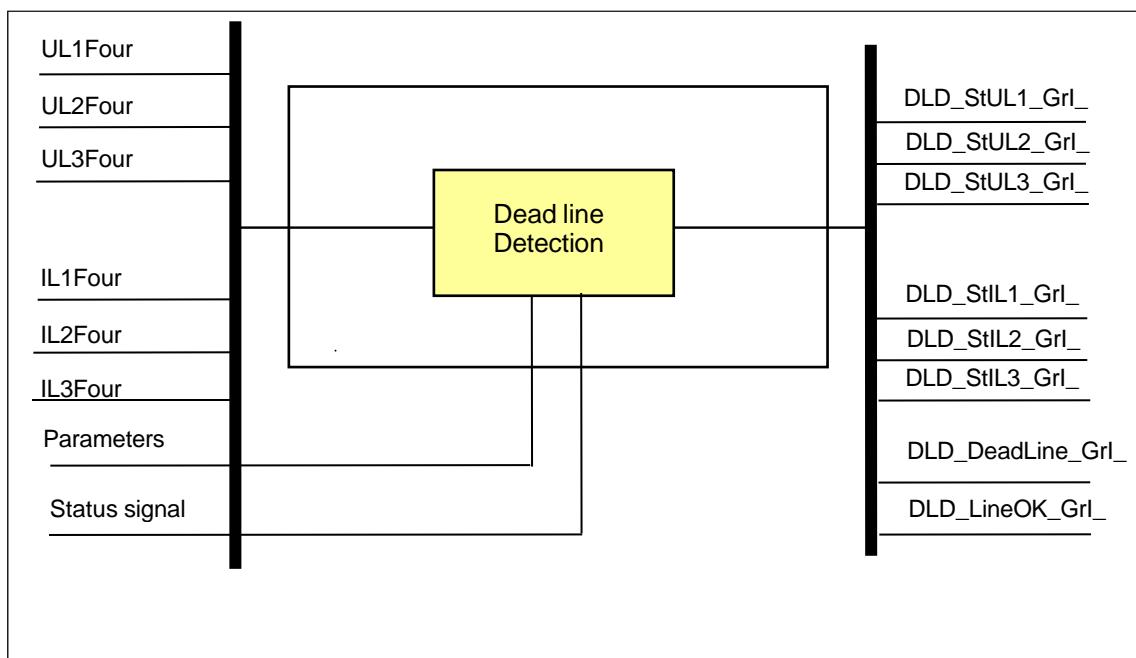


Figure 1-5 Principal scheme of the dead line detection function

The parameters of the dead line detection function are listed in Table 1-1.

Integer parameters

Parameter name	Title	Unit	Min	Max	Step	Default
Integer parameters of the dead line detection function						
DLD_Ulev_IPar_	Min Operate Voltage	%	10	100	1	60
DLD_ILev_IPar_	Min Operate Current	%	2	100	1	10

Table 1-1 The integer parameters of the dead line detection function

Binary status signals

The dead line detection function has a binary input signal, which serves the purpose of disabling the function. **The conditions of disabling are defined by the user, applying the graphic equation editor.**

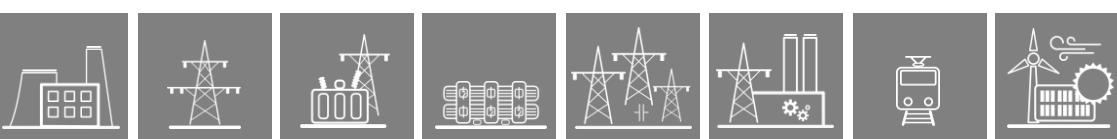

Binary status signal	Explanation
DLD_Blk_GrO_	Output status of a graphic equation defined by the user to disable the dead line detection function.

Table 1-2 The binary input signal of the dead line detection function

The **binary output status signals** of the dead line detection function are listed in Table 1-3.

Binary output signals	Signal title	Explanation
DLD_StUL1_Grl_	Start UL1	The voltage of phase L1 is above the preset parameter value
DLD_StUL2_Grl_	Start UL2	The voltage of phase L2 is above the preset parameter value
DLD_StUL3_Grl_	Start UL3	The voltage of phase L3 is above the preset parameter value
DLD_StIL1_Grl_	Start IL1	The current of phase L1 is above the preset parameter value
DLD_StIL2_Grl_	Start IL2	The current of phase L2 is above the preset parameter value
DLD_StIL3_Grl_	Start IL3	The current of phase L3 is above the preset parameter value
DLD_DeadLine_Grl_	DeadLine condition	The criteria for dead line condition are fulfilled
DLD_LineOK_Grl_	LineOK condition	The criteria for line OK condition are fulfilled

Table 1-3 The binary output status signals of the dead line detection function

3.2.8.7. Voltage transformer supervision (VTS algorithm)

The voltage transformer supervision function can be used in three different modes of operation:

Zero sequence detection (for typical applications in systems with grounded neutral): “VT failure” signal is generated if the residual voltage ($3U_0$) is above the preset voltage value AND the residual current ($3I_0$) is below the preset current value.

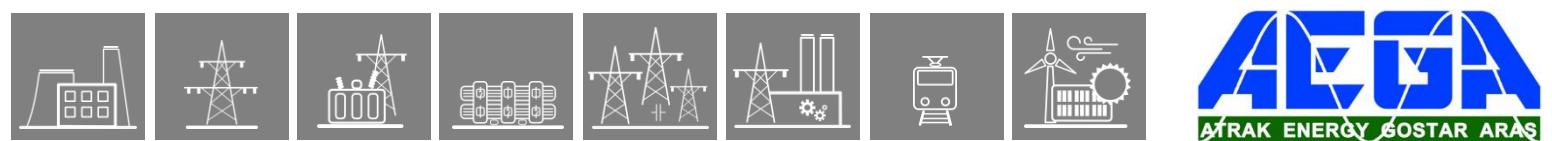
Negative sequence detection (for typical applications in systems with isolated or resonant grounded (Petersen) neutral): “VT failure” signal is generated if the negative sequence voltage component (U_2) is above the preset voltage value AND the negative sequence current component (I_2) is below the preset current value.

Special application: “VT failure” signal is generated if the residual voltage ($3U_0$) is above the preset voltage value AND the residual current ($3I_0$) AND the negative sequence current component (I_2) are below the preset current values.

The task of this module is to detect if the conditions of the “VTS FAIL” state are fulfilled, according to the conditions defined for the selected mode of operation.

The **inputs** are

- the basic Fourier components of the residual voltage ($U_{ZerFour}$) and current ($I_{ZerFour}$),
- the negative sequence components of the voltage ($U_{NegFour}$) and current ($I_{NegFour}$),
- binary signals from the dead line detection function,
- parameters.


NOTE: For the operation of the voltage transformer supervision function the “Dead line detection function” must be operable as well: it must be enabled by binary parameter setting, and its blocking signal may not be active.

The **output** is the internal status signal of the function. This internal signal indicates if the “VTS_FAIL_int” condition is fulfilled.

Binary output signals	Signal title	Explanation
VTS_FAIL_int	VTS_FAIL_int	Internal status signal indicating the fulfillment of conditions. This status signal is not available for the users.

Table 1-4 The binary internal status signals of the voltage transformer supervision algorithm

The parameters of the voltage transformer supervision algorithm are listed in Table 1-5 and in Table 1-6.

Enumerated parameter


Parameter name	Title	Selection range	Default
Parameter for type selection			
VTS_Oper_EPar_	Operation	Off, Zero sequence, Neg sequence, Special	Zero sequence

Table 1-5 The enumerated parameters of the voltage transformer supervision function

Integer parameters

Parameter name	Title	Unit	Min	Max	Step	Default
Starting voltage and current parameter for residual and negative sequence detection:						
VTS_Uo_IPar_	Start URes	%	5	50	1	30
VTS_Io_IPar_	Start IRes	%	10	50	1	10
VTS_Uneg_IPar_	Start UNeg	%	5	50	1	10
VTS_Ineg_IPar_	Start INeg	%	10	50	1	10

Table 1-6 The integer parameters of the voltage transformer supervision algorithm

3.2.8.8. The decision logic (Decision logic)

The decision logic module combines the status signals, binary and enumerated parameters to generate the trip command of the function.

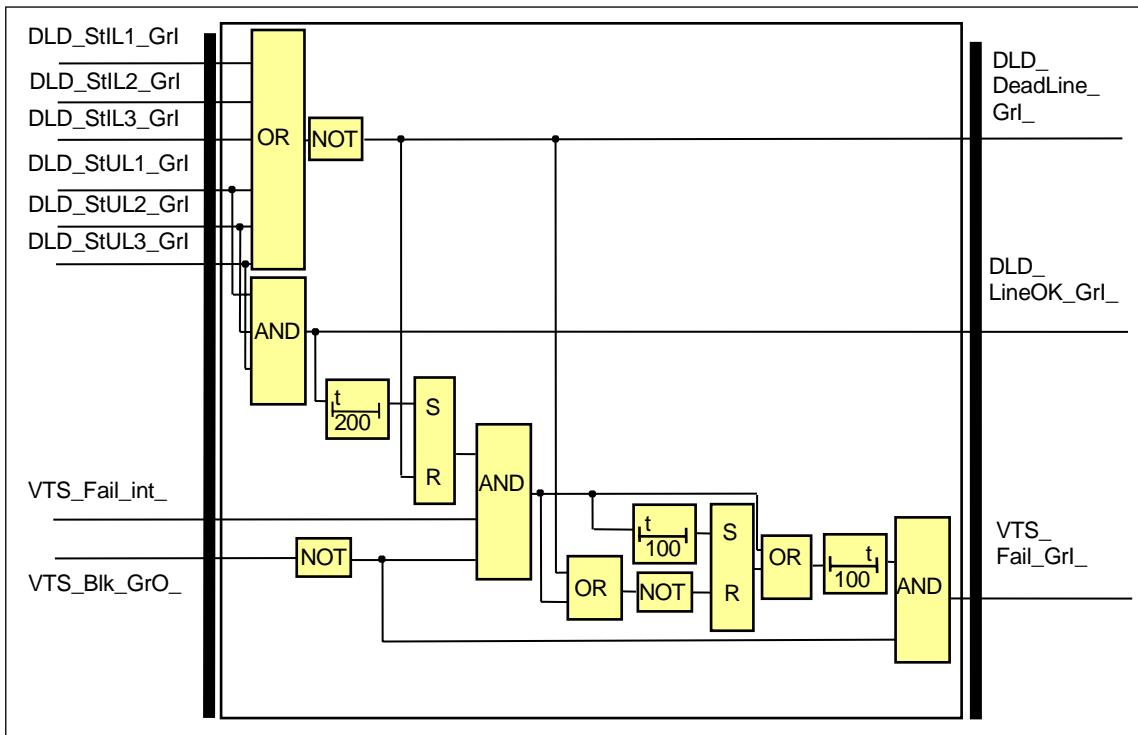
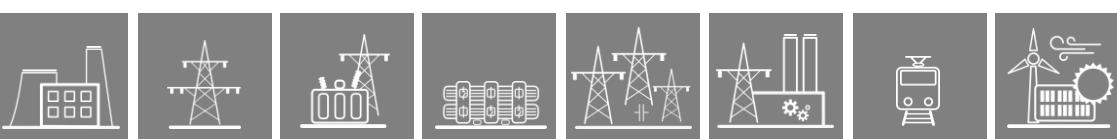



Figure 1-6 The logic scheme of the decision logic

Binary input signals	Signal title	Explanation
DLD_StUL1_Grl_	Start UL1	The voltage of phase L1 is above the preset parameter value
DLD_StUL2_Grl_	Start UL2	The voltage of phase L2 is above the preset parameter value
DLD_StUL3_Grl_	Start UL3	The voltage of phase L3 is above the preset parameter value
DLD_StIL1_Grl_	Start IL1	The current of phase L1 is above the preset parameter value
DLD_StIL2_Grl_	Start IL2	The current of phase L2 is above the preset parameter value
DLD_StIL3_Grl_	Start IL3	The current of phase L3 is above the preset parameter value
VTS_FAIL_int	VTS_FAIL_int	Internal status signal indicating the fulfillment of conditions. This status signal is not available for the users.

Table 1-7 The binary input signals of the decision logic

Binary status signals

The voltage transformer supervision function has a binary input signal, which serves the purpose of disabling the function. **The conditions of disabling are defined by the user, applying the graphic equation editor.**

Binary status signal	Explanation
VTS_Blk_GrO_	Output status of a graphic equation defined by the user to disable the voltage transformer supervision function.

Table 1-8 The binary input signal of the decision logic

Binary output signals	Signal title	Explanation
DLD_DeadLine_Grl_	DeadLine condition	The requirements of “DeadLine condition” are fulfilled
DLD_LineOK_Grl_	LineOK condition	The requirements of “LineOK condition” are fulfilled
VTS_Fail_Grl	VT Failure	Failure status signal of the VTS function

Table 1-9 The binary output status signals of the decision logic

3.2.8.9. Technical summary

3.2.8.9.1. Technical data

Function	Value	Accuracy
Pick-up voltage Io=0A I2=0A		<1% <1%
Operation time	<20ms	
Reset ratio	0.95	

Table 1-10 Technical data of the voltage transformer supervision function

3.2.8.9.2. The parameters

Integer parameters

Parameter name	Title	Unit	Min	Max	Step	Default
Integer parameters of the dead line detection function						
DLD_ULev_IPar_	Min Operate Voltage	%	10	100	1	60
DLD_ILev_IPar_	Min Operate Current	%	2	100	1	10
Starting voltage and current parameter for residual and negative sequence detection:						
VTS_Uo_IPar_	Start URes	%	5	50	1	30
VTS_Io_IPar_	Start IRes	%	10	50	1	10
VTS_Uneg_IPar_	Start UNeg	%	5	50	1	10
VTS_Ineg_IPar_	Start INeg	%	10	50	1	10

Table 1-11 The integer parameters of the voltage transformer supervision function

Enumerated parameter

Parameter name	Title	Selection range	Default
Parameter for type selection			
VTS_Oper_EPar_	Operation	Off, Zero sequence, Neg. sequence, Special	Zero sequence

Table 1-12 The enumerated parameter of the voltage transformer supervision function

3.2.8.9.3. The binary input status signals

Binary status signals

The voltage transformer supervision function has a binary input signal, which serves the purpose of disabling the function. **The conditions of disabling are defined by the user, applying the graphic equation editor.**

Binary status signal	Explanation
VTS_Blk_GrO_	Output status of a graphic equation defined by the user to disable the voltage transformer supervision function.


Table 1-13 The binary input signal of the voltage transformer supervision function

3.2.8.9.4. Binary output status signals

The **binary output status signals** of the voltage transformer supervision function are listed in Table 1-14.

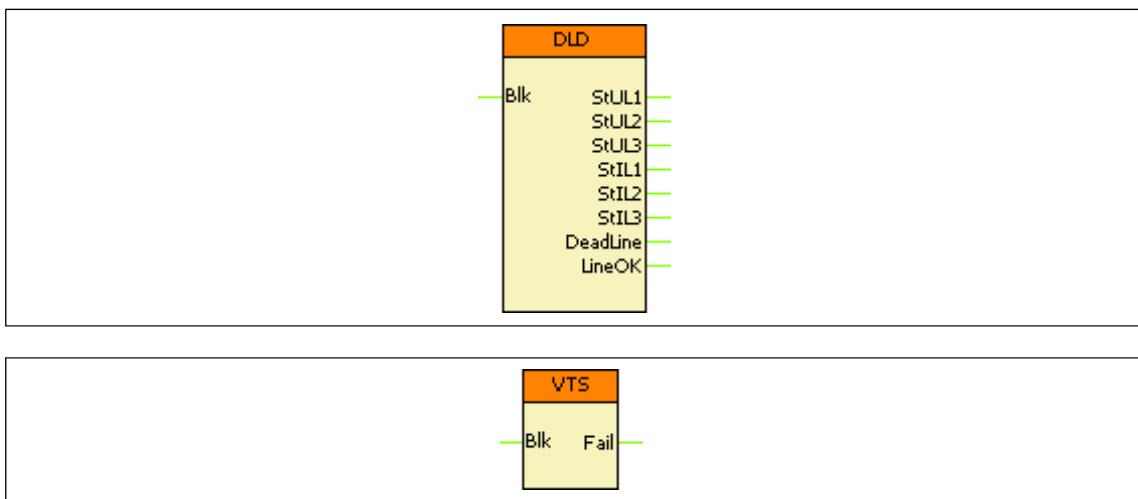
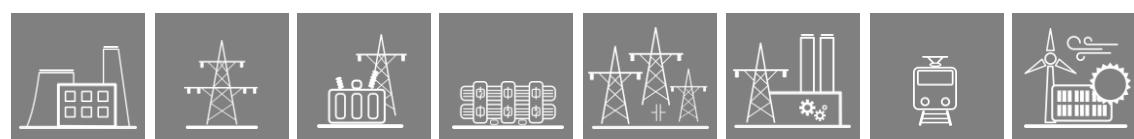

Binary output signals	Signal title	Explanation
DLD function		
DLD_StUL1_Grl_	Start UL1	The voltage of phase L1 is above the preset parameter value, signal of the DLD function
DLD_StUL2_Grl_	Start UL2	The voltage of phase L2 is above the preset parameter value, signal of the DLD function
DLD_StUL3_Grl_	Start UL3	The voltage of phase L3 is above the preset parameter value, signal of the DLD function
DLD_StIL1_Grl_	Start IL1	The current of phase L1 is above the preset parameter value, signal of the DLD function
DLD_StIL2_Grl_	Start IL2	The current of phase L2 is above the preset parameter value, signal of the DLD function
DLD_StIL3_Grl_	Start IL3	The current of phase L3 is above the preset parameter value, signal of the DLD function
DLD_DeadLine_Grl_	DeadLine condition	The requirements of “DeadLine condition” are fulfilled, signal of the DLD function
DLD_LineOK_Grl_	LineOK condition	The requirements of “LineOK condition” are fulfilled, signal of the DLD function
VTS function		
VTS_Fail_Grl	VT Failure	Failure status signal of the VTS function

Table 1-14 The binary output signals of the voltage transformer supervision function



3.2.8.9.5. The function block

The function block of the dead line detection and voltage transformer supervision function is shown in [Figure 1-7](#). This block shows all binary input and output status signals that are applicable in the graphic equation editor.

Figure 1-7 The function block of the dead line detection and voltage transformer supervision function

3.2.9. Current unbalance function

3.2.9.1. Application

The current unbalance protection function can be applied to detect unexpected asymmetry in current measurement.

3.2.9.1.1. Mode of operation

The applied method selects maximum and minimum phase currents (RMS values of the fundamental Fourier components). If the difference between them is above the setting limit, the function generates a start signal. It is a necessary precondition of start signal generation that the maximum of the currents be above 10 % of the rated current and below 150% of the rated current.

The function can be disabled by parameter setting, and by an input signal programmed by the user with the graphic programming tool.

The trip command is generated after the defined time delay if trip command is enabled by parameter setting.

3.2.9.1.2. Operation principles

Figure 1-1 shows the structure of the current unbalance protection algorithm.

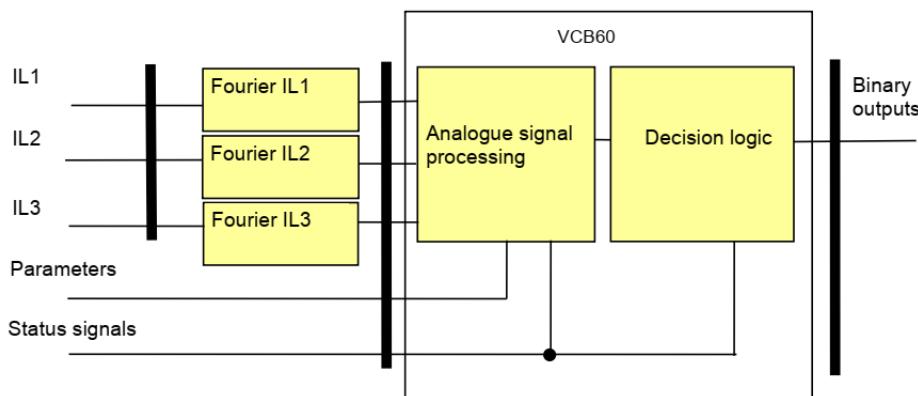


Figure 1-1 Structure of the current unbalance protection algorithm

The **inputs** of the preparatory phase are

- the three phase currents,

The **outputs** of the preparatory phase are

- the RMS values of the fundamental Fourier component of three phase currents.

The **inputs** of the current unbalance function are

- the RMS values of the fundamental Fourier component of three phase currents,
- parameters,
- status signals.

The **outputs** are

- the binary output status signals.

The **software modules** of the current unbalance function:

Fourier calculations

These modules calculate the RMS values of the basic Fourier current components of the phase currents individually (not part of the VCB60 function).

Analogue signal processing

This module processes the RMS values of the Fourier components of the phase currents to prepare the signals for the decision.

Decision logic

The decision logic module combines the status signals to generate the starting signal and the trip command of the function.

The following description explains the details of the individual components.

3.2.9.1.3. The Fourier calculation (Fourier)

These modules calculate the RMS values of the fundamental Fourier components of the phase currents individually. They are not part of the VCB60 function; they belong to the preparatory phase.

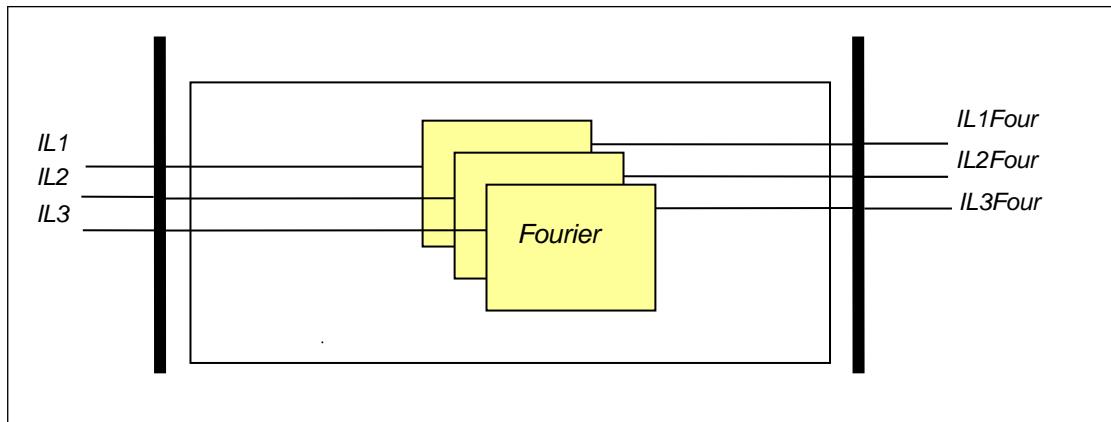


Figure 1-2 Principal scheme of the Fourier calculation

The **inputs** are the sampled values of the three phase currents (IL1, IL2, IL3)

The **outputs** are the RMS values of the fundamental Fourier components of the phase currents (IL1Four, IL2Four, IL3Four).

3.2.9.1.4. The Analogue signal processing

This module processes the Fourier components of the phase currents to prepare the signals for the decision.

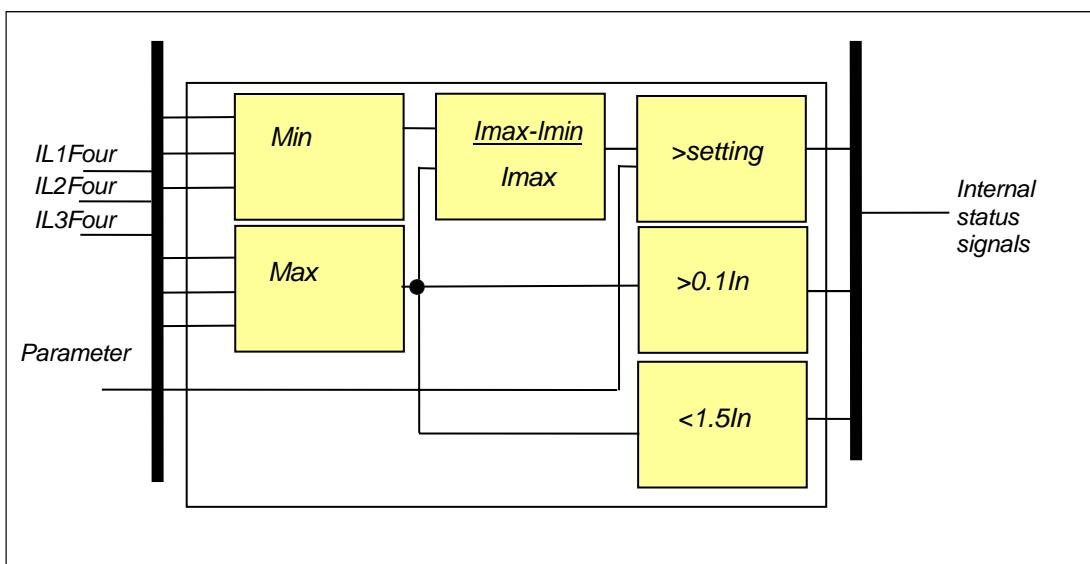
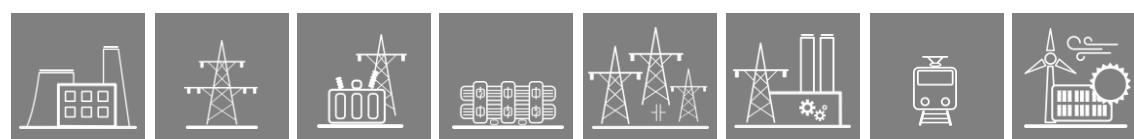



Figure 1-3 Principal scheme of the analogue signal processing

The **inputs** are the fundamental Fourier components of the analyzed currents (IL1Four, IL2Four, IL3Four)

The **outputs** are internal binary signals:

- $\Delta I >$ The difference between the maximum and minimum of the RMS values of the fundamental Fourier components of the phase currents as a percentage of the maximum of these values is above the limit defined by the preset parameter "Start current";
- $I_{max} > 0.1In$ The maximum of the RMS values of the fundamental Fourier components of the phase currents is sufficient for evaluation;
- $I_{max} < 1.5In$ The maximum of the RMS values of the fundamental Fourier components of the phase currents is not considered as a fault current.

3.2.9.1.5. The decision logic (Decision logic)

The decision logic module combines the status signals, binary and enumerated parameters to generate the trip command of the function.

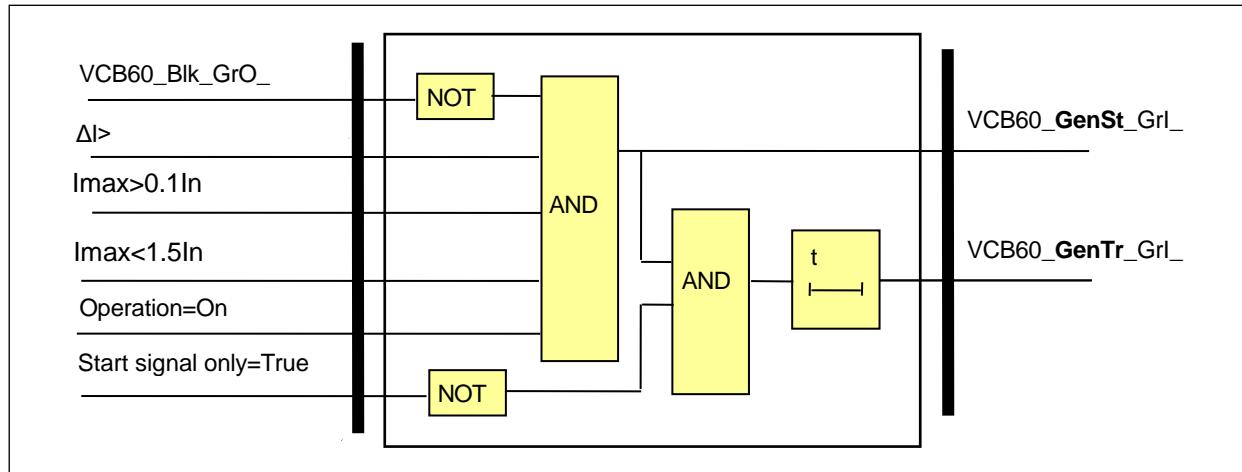


Figure 1-4 The logic scheme of the current unbalance function

The **inputs** are internal binary signals:

- $\Delta I >$ the difference between the maximum and minimum of the RMS values of the fundamental Fourier components of the phase currents as a percentage of the maximum of these values is above the limit defined by parameter setting “Start Current Diff”;
- $I_{max} > 0.1I_n$ the maximum of the RMS values of the fundamental Fourier components of the phase currents is sufficient for evaluation;
- $I_{max} < 1.5I_n$ the maximum of the RMS values of the fundamental Fourier components of the phase currents is not considered as a fault current.

3.2.9.2. Current unbalance protection function overview

The graphic appearance of the function block of the current unbalance protection function is shown below. The block shows all binary input and output status signals which are applicable in the graphic equation editor.

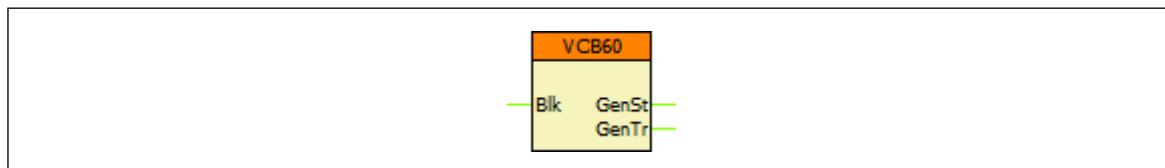
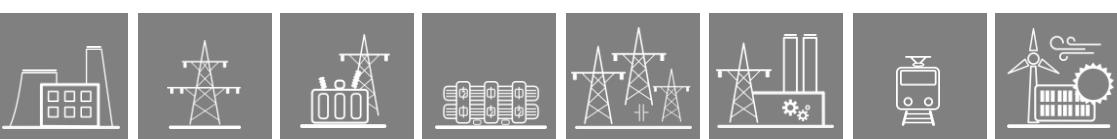



Figure 2-1 Graphic appearance of the function block of the current unbalance protection function

3.2.9.2.1. Settings

3.2.9.2.1.1. Parameters

The available parameters are listed below in order of their appearance in the *parameters* menu. If the setting range of a parameter should be extended, contact Protecta Support.

Table 2-1 Parameters of the current unbalance protection function

TITLE	DIM	RANGE	STEP	DEFAULT	EXPLANATION
Operation	-	Off, On	-	Off	Enabling the function
Start Signal Only	-	FALSE, TRUE	-	FALSE	When checked, the function provides start signal only, and no trip signal.
Start Current	%	10 – 90	1	50	Phase difference current setting
Time Delay	msec	100 – 60000	1	1000	Time delay (including the algorithm time, see Chapter 2.4 for more explanation)

3.2.9.2.2. Function I/O

This section describes briefly the analogue and digital inputs and outputs of the function block.

3.2.9.2.2.1. Analogue inputs

The function uses the sampled values of a current input. This is defined in the configuration.

3.2.9.2.2.2. Binary input signals (graphed output statuses)

The conditions of the binary inputs are defined by the user, applying the graphic equation editor (*Logic Editor*). Parts written in **bold** are seen on the left side function block in the *Logic editor*.

Table 2-2 The binary input signal of the current unbalance protection function

BINARY OUTPUT SIGNAL	EXPLANATION
VCB60_Blk_GrO_	Blocking input of the function

3.2.9.2.2.3. Binary output signals (graphed input statuses)

These signals can be used in EuroCAP to assign to LED, user LCD object etc. Parts written in **bold** are seen on the right side of the function block in the *Logic Editor*.

Table 2-3 The binary output signals of the current unbalance protection function

BINARY OUTPUT SIGNAL	SIGNAL TITLE	EXPLANATION
VCB60_GenSt_Grl_	General Start	General start signal of the function
VCB60_GenTr_Grl_	General Trip	General trip command of the function

3.2.9.2.2.4. Online data

Visible values on the *online data* page.

Table 2-4 Online displayed data of the current unbalance protection function

SIGNAL TITLE	DIMENSION	EXPLANATION
General Start	-	General start signal of the function
General Trip	-	General trip command of the function

3.2.9.2.2.5. Events

The following events are generated in the event list, as well as sent to the SCADA according to the configuration.

Table 2-5 Generated events of the current unbalance protection function

EVENT	VALUE	EXPLANATION
General Start	off, on	General start of the function
General Trip	off, on	General trip command of the function

3.2.9.2.3. Technical data

Table 2-6 Technical data of the current unbalance protection function


FUNCTION	VALUE	ACCURACY
Pick-up starting accuracy at I_n		< 2 %
Reset ratio	0,95	
Operate time	70 ms	

3.2.9.2.4. Notes for testing

Normally in the EuroProt+ devices the trip contacts are assigned to the Trip Logic function block, and not to the protection function blocks. Because of this, the testing personnel must make sure that the Trip Logic is switched on ('Operation' parameter is set to other than 'Off') before starting the tests, otherwise there will be no physical trip on the relay.

Note that the time delay parameter incorporates the algorithm time as well, so the time delay *does not mean the time difference between the appearance of the start and trip signals* of the function. In other words: it is not the delay between the detection of the fault and the trip that follows it. This should be taken into consideration when checking the disturbance records.

Instead the time delay parameter defines the elapsed time from the appearance of the faulty state to the trip. Because of this, while testing, the delay measurement should start *from the moment of the fault injection* until the trip signal.

3.3. Measuring functions

The measured values can be checked on the touch-screen of the device in the “On-line functions” page, or using an Internet browser of a connected computer. The displayed values are secondary voltages and currents, except the block “Line measurement”. This specific block displays the measured values in primary units, using VT and CT primary value settings.

Analog value	Explanation
VT4 module	
Voltage Ch – U1	RMS value of the Fourier fundamental harmonic voltage component in phase L1
Angle Ch – U1	Phase angle of the Fourier fundamental harmonic voltage component in phase L1*
Voltage Ch – U2	RMS value of the Fourier fundamental harmonic voltage component in phase L2
Angle Ch – U2	Phase angle of the Fourier fundamental harmonic voltage component in phase L2*
Voltage Ch – U3	RMS value of the Fourier fundamental harmonic voltage component in phase L3
Angle Ch – U3	Phase angle of the Fourier fundamental harmonic voltage component in phase L3*
Voltage Ch – U4	RMS value of the Fourier fundamental harmonic voltage component in Channel U4
Angle Ch – U4	Phase angle of the Fourier fundamental harmonic voltage component in Channel U4*
CT4 module	
Current Ch - I1	RMS value of the Fourier fundamental harmonic current component in phase L1
Angle Ch - I1	Phase angle of the Fourier fundamental harmonic current component in phase L1*
Current Ch - I2	RMS value of the Fourier fundamental harmonic current component in phase L2
Angle Ch - I2	Phase angle of the Fourier fundamental harmonic current component in phase L2*
Current Ch - I3	RMS value of the Fourier fundamental harmonic current component in phase L3
Angle Ch - I3	Phase angle of the Fourier fundamental harmonic current component in phase L3*
Current Ch - I4	RMS value of the Fourier fundamental harmonic current component in Channel I4
Angle Ch - I4	Phase angle of the Fourier fundamental harmonic current component in Channel I4*
<i>Distance protection function (DIS21_HV)</i>	
Fault location	Measured distance to fault
Fault react.	Measured reactance in the fault loop
L1N loop R	Resistive component value of impedance in L1-N loop
L1N loop X	Reactive component value of impedance in L1-N loop
L2N loop R	Resistive component value of impedance in L2-N loop
L2N loop X	Reactive component value of impedance in L2-N loop
L3N loop R	Resistive component value of impedance in L3-N loop
L3N loop X	Reactive component value of impedance in L3-N loop
L12 loop R	Resistive component value of impedance in L12 loop
L12 loop X	Reactive component value of impedance in L12 loop
L23 loop R	Resistive component value of impedance in L23 loop
L23 loop X	Reactive component value of impedance in L23 loop
L31 loop R	Resistive component value of impedance in L31 loop
L31 loop X	Reactive component value of impedance in L31 loop

<i>Synchrocheck function (SYN25)</i>	
Voltage Diff	Voltage different value
Frequency Diff	Frequency different value
Angle Diff	Angle different value
<i>Line measurement (MXU_L) (here the displayed information means primary value)</i>	
Active Power – P	Three-phase active power
Reactive Power – Q	Three-phase reactive power
Apparent Power – S	Three-phase power based on true RMS voltage and current measurement
Current L1	True RMS value of the current in phase L1
Current L2	True RMS value of the current in phase L2
Current L3	True RMS value of the current in phase L3
Voltage L1	True RMS value of the voltage in phase L1
Voltage L2	True RMS value of the voltage in phase L2
Voltage L3	True RMS value of the voltage in phase L3
Voltage L12	True RMS value of the voltage between phases L1 L2
Voltage L23	True RMS value of the voltage between phases L2 L3
Voltage L31	True RMS value of the voltage between phases L3 L1
Frequency	Frequency
<i>Metering (MTR)</i>	
Forward MWh	Forward MWh
Backward MWh	Backward MWh
Forward MVArh	Forward MVArh
Backward MVArh	Backward MVArh
<i>Line thermal protection (TTR49L)</i>	
Calc. Temperature	Calculated line temperature

* The reference angle is the phase angle of "Voltage Ch - U1"

Table 3-146 Measured analog values

3.3.1. Current input function

3.3.1.1. Application of the current input function

The application of the current inputs depends on the correct connection of the hardware terminals and also on the correct parameter setting for the CT4 function block. This guide describes examples, based on which any other combinations can be realized.

In the applications of the current transformer hardware module, the first three current inputs (terminals 1-2, 3-4, 5-6) receive the three phase currents (IL1, IL2, IL3), the fourth input (terminals 7-8) is reserved for zero sequence current, for the zero sequence current of the parallel line or for any additional currents. Accordingly, the first three inputs have common parameters while the fourth current input needs individual setting.

The CT4 function block is an independent module in the sense that:

- It has independent parameters to be set, associated to the current inputs,
- It delivers the sampled current values for protection, measurement function blocks and for disturbance recording and for on-line displaying,
- It provides parameters for the subsequent functions blocks for scaling the measured currents.
- It performs the basic calculations
 - Fourier basic harmonic magnitude and angle,
 - True RMS value.

3.3.1.1.1. Parameter setting

3.3.1.1.1.1. Summary of the parameters

The parameters of the current input function are explained in the following tables.

Enumerated parameters

Parameter name	Title	Selection range	Default
Rated secondary current of the first three input channels. 1A or 5A is selected by parameter setting, no hardware modification is needed.			
CT4_Ch13Nom_EPar_	Rated Secondary I1-3	1A,5A	1A
Rated secondary current of the fourth input channel. 1A or 5A (0.2A, 1A) is selected by parameter setting, no hardware modification is needed.			
CT4_Ch4Nom_EPar_	Rated Secondary I4	1A,5A (0.2A, 1A)	1A
Definition of the positive direction of the first three currents, given by location of the secondary star connection point			
CT4_Ch13Dir_EPar_	Starpoint I1-3	Line,Bus	Line
Definition of the positive direction of the fourth current, given as normal or inverted			
CT4_Ch4Dir_EPar_	Direction I4	Normal,Inverted	Normal

Table 1-1 The enumerated parameters of the current input function

Floating point parameters

Parameter name	Title	Dim.	Min	Max	Default
Rated primary current of channel1-3					
CT4_Pril13_FPar_	Rated Primary I1-3	A	100	4000	1000
Rated primary current of channel4					
CT4_Pril4_FPar_	Rated Primary I4	A	100	4000	1000

Table 1-2 The floating point parameters of the current input function

NOTE: The rated primary current of the channels is not needed for the current input function block itself. These values are passed on to the subsequent function blocks.

3.3.1.1.1.2. Setting the rated secondary current

The scaling of the currents (even hardware scaling) depends on parameter setting.

Rated Secondary I1-3 and Rated Secondary I4

Select the rated secondary current according to the nominal data of the main current transformer. The options to choose from are 1A or 5A (in special applications, 0.2A or 1A). This parameter influences the internal number format and, naturally, accuracy. (A small current is processed with finer resolution if 1A is selected.) The first parameter is common for the first three channels and the second one is applied for the fourth channel.

NOTE: when selecting from the available choice, no hardware modification is needed.

3.3.1.1.1.3. Setting the positive direction of the currents

The positive direction of the currents influences the correct operation of directionality (e.g. distance protection, directional overcurrent protection, power calculation, etc.) If needed, the currents can be inverted by setting parameters. This is equivalent to interchanging the two wires, connecting the currents to the inputs.

Starpoint I1-3 and Direction I4.

Starpoint I1-3 applies to each of the channels IL1, IL2 and IL3. The example of Figure 1-1 below shows the connection and the correct parameter setting for Starpoint I1-3=Line. The current L1 is connected to terminal No1 of the CT input, the current L2 to No3, and the current L3 to No5. The common point of the CT inputs is the connected No2-No4-No6. This point leads the residual current to the input No7. The connection point No8 is connected with the fourth wire to the star-point of the CTs. This application of the fourth channel is the "Normal" direction.


If the currents are connected not this way then change the parameter values accordingly.

3.3.1.1.1.4. Setting the rated primary current

These parameters are needed only to display the currents (and powers) in primary scale. The protection function apply secondary values, these parameters are not needed for protection functions.

Rated Primary I1-3 and Rated Primary I-4

Select the rated primary currents according to the nominal data of the main current transformers. The first parameter (Rated Primary I1-3) is common for the first three channels and the second (Rated Primary I-4) is for the fourth channel.

3.3.1.1.2. Application of the on-line measurements in commissioning

The **measured values** of the current input function block are listed and explained in the Table below.

Measured value	Dim.	Explanation
Current Ch - I1	A(secondry)	Fourier basic component of the current in channel IL1
Angle Ch - I1	degree	Vector position of the current in channel IL1
Current Ch - I2	A(secondry)	Fourier basic component of the current in channel IL2
Angle Ch - I2	degree	Vector position of the current in channel IL2
Current Ch - I3	A(secondry)	Fourier basic component of the current in channel IL3
Angle Ch - I3	degree	Vector position of the current in channel IL3
Current Ch - I4	A(secondry)	Fourier basic component of the current in channel I4
Angle Ch - I4	degree	Vector position of the current in channel I4

Table 1-3 The measured analogue values of the current input function

NOTE1: The scaling of the Fourier basic component is such that if pure sinusoid 1A RMS of the rated frequency is injected, the displayed value is 1A.

NOTE2: The reference of the vector position depends on the device configuration. If a voltage input module is included, then the reference vector (vector with angle 0 degree) is the vector calculated for the first voltage input channel of the first applied voltage input module. If no voltage input module is configured, then the reference vector (vector with angle 0 degree) is the vector calculated for the first current input channel of the first applied current input module. (The first input module is the one, located closer to the CPU module.)

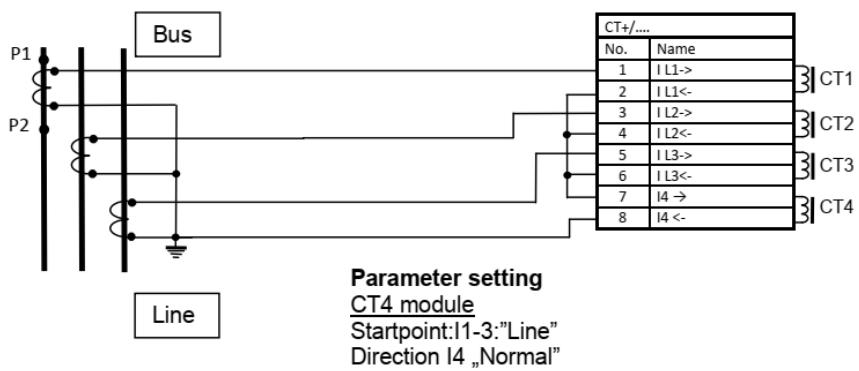
3.3.1.1.3. Examples

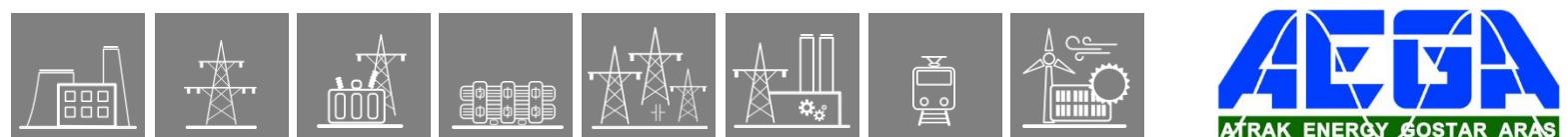
When the vector position of the currents are relevant (e.g. distance protection, directional overcurrent protection, power measurement, etc.) then mind the correct connection of the instrument transformers and the related parameter setting. If the wires of the secondary cables are interchanged then change also the related parameter values.

3.3.1.1.3.1. Residual current measurement

Figure 1-1 shows a connection example with 3Io measurement. The star-point of the CT-s is towards the line, L1 is connected to terminal No1 of the CT input, L2 to No3, L3 to No5.

The common point of the CT inputs is the connected No2-No4-No6. This point leads the residual current to the input No7. The connection point No8 is connected with the fourth wire to the star-point of the CTs.




Figure 1-1 Example: CT connection with 3Io measurement

The related proposed parameter setting is the screen-shot of Figure 1-2. Parameter "Starpoint I1-3" is set to "Line", indicating that the star-point is toward the protected object (line). The parameter "Direction I4" is set to "Normal", indicating that the residual current flows in to terminal No7 and the star point of the primary current transformer is toward the protected object (line).

[-] CT4 Primary2 "P"			
Device value (Default_set_1)	New value		
Rated Secondary I1-3	1A	1A	
Rated Secondary I4	1A	1A	
Starpoint I1-3	Line	Line	
Direction I4	Normal	Normal	
Rated Primary I1-3	1000	1000	A (100 - 4000 / 1)
Rated Primary I4	1000	1000	A (100 - 4000 / 1)

Figure 1-2 Example: Parameter setting, according to Figure 1-1

In case of normal operation of the network, the correct connection of the CT-s and the related parameter setting can be checked using the "On-line" measurements. Disconnect one phase of the protected line, e.g. L1. The expected result is shown in Figure 1-3. The current is missing in phase L1 (Current Ch-I1 = 0) and the measured 3Io value is the vector sum of the remaining I2+I3. (Value of "Current Ch - I4" with the related "Angle - I4".

NOTE: If in this test, only the secondary current is disclosed using a short measuring cable, then the measured current in this phase is usually not zero, due to the current distribution between the low-impedance input and the impedance of the measuring cable. For correct result, additionally to the short-circuit, also the disconnection of this input is needed. In this example the reference vector is the vector of the first voltage channel (not shown in the screenshot).

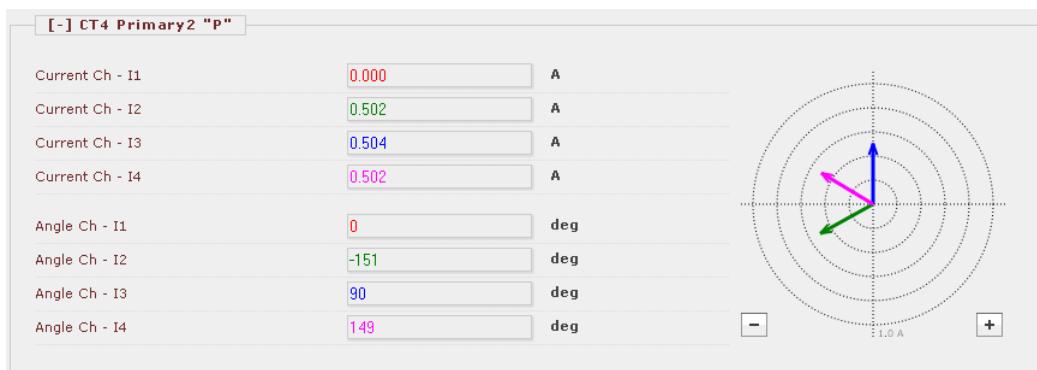


Figure 1-3 Example: Checking the current connection

3.3.1.1.3.2. Application of core-balanced CT

Figure 1-4 shows a connection example with 3Io measurement. The star-point of the CT-s is towards the line, L1 is connected to terminal No1 of the CT input, L2 to No3, L3 to No5.

The common point of the CT inputs is the connected No2-No4-No6. The separately measured residual current is connected with the same polarity to terminals 7-8.

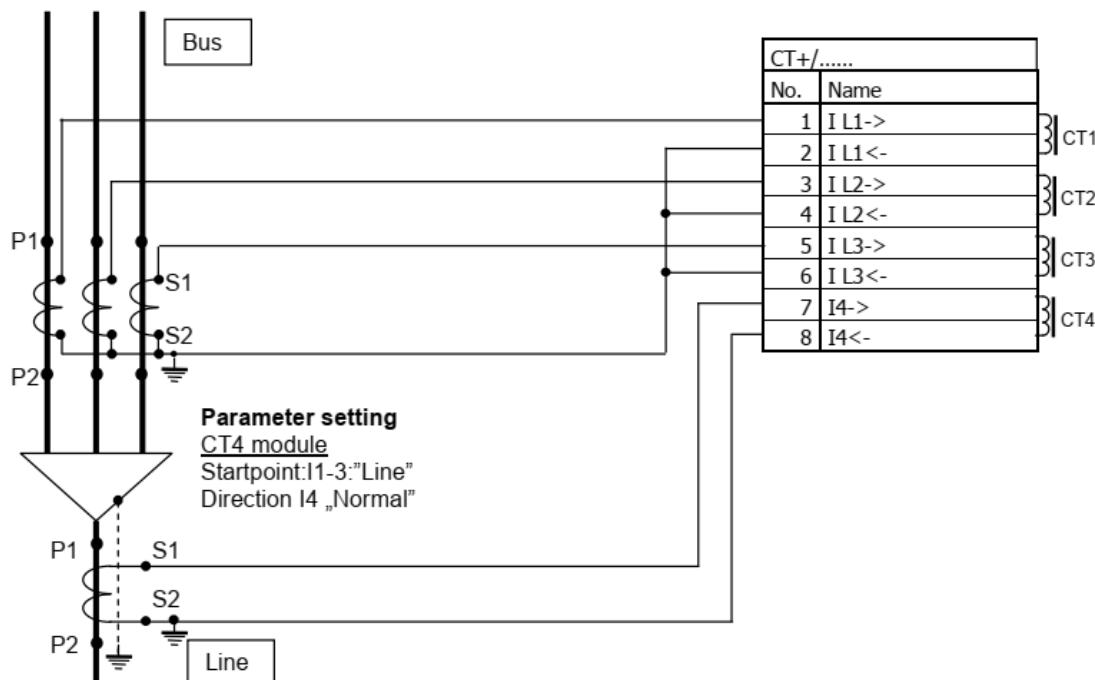


Figure 1-4 Example: CT connection with core-balance CT application

This figure also indicates the proposed parameter values for this connection. The checking is similar to that, shown in Figure 1-3.

3.3.2. AIC current input function

3.3.2.1. Application of the AIC current input function

If the factory configuration includes an AIC input hardware module, the AIC current input function block is automatically configured among the software function blocks. Separate current input function blocks are assigned to each AIC current input hardware module.

The AIC current input module accepts transducers current outputs. The AIC module has four channels, they can measure unipolar and bipolar current values in wide ranges. (See EuroProt+ hardware description document.) The transducer converts any physical quantity to DC current values.

The transmitters can be connected by wiring methods, shown in Figure 1–1, Figure 1–2 and Figure 1–3.

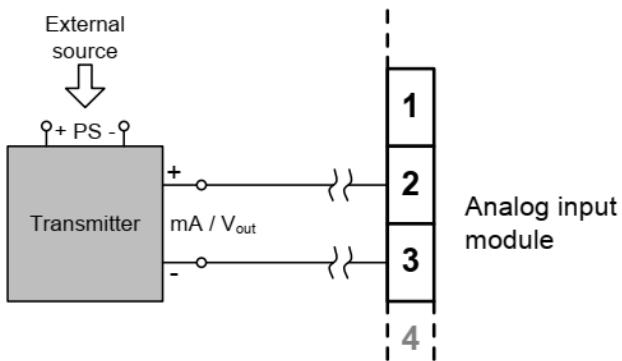


Figure 1-1 2-wire AIC wiring without 12 V excitation

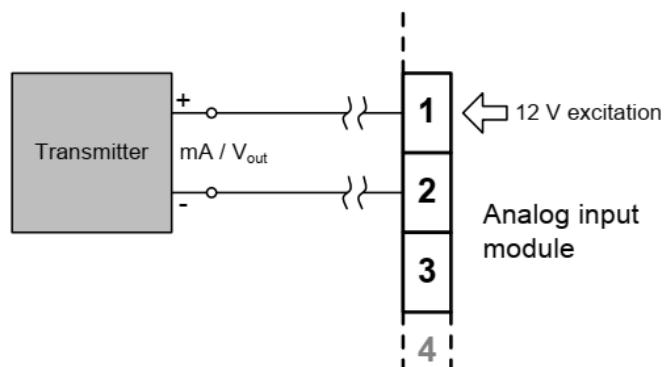


Figure 1-2 2-wire AIC wiring with 12 V excitation

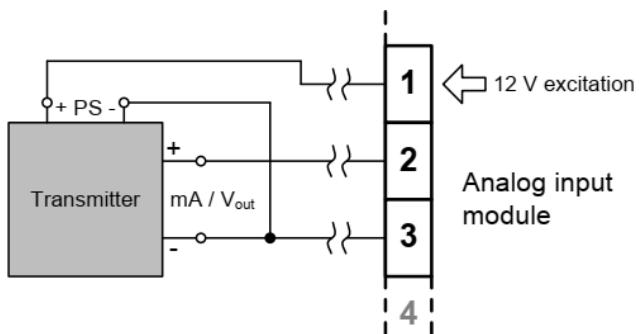



Figure 1-3 3-wire AIC wiring with 12 V excitation

The channels of the module are independent of each other. To each channel a dedicated measuring module is assigned. These measuring modules are described in a separate document: “**GGIOMA current measurement module function block description**”.

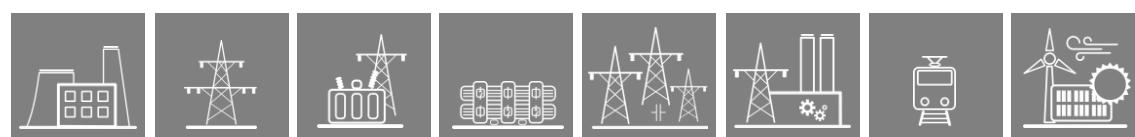
3.3.2.2. Technical summary

3.3.2.2.1. Technical data

The technical data of the AIC analog current input module are related to the hardware module. This is described in the document “**EuroProt+ Hardware description**, Chapter 11: analog input module”.

3.3.2.2.2. Summary of the parameters

The parameters of the AIC analog current input function are explained in the following table.


Enumerated parameters

Parameter name	Title	Selection range	Default
Polarity of Channel 1			
AIC_Ch1Dir_EPar_1	Direction - Ch1	Normal,Inverted*	Normal
Polarity of Channel 2			
AIC_Ch2Dir_EPar_1	Direction – Ch2	Normal,Inverted*	Normal
Polarity of Channel 3			
AIC_Ch3Dir_EPar_1	Direction – Ch3	Normal,Inverted*	Normal
Polarity of Channel 4			
AIC_Ch4Dir_EPar_1	Direction – Ch4	Normal,Inverted*	Normal

*Figures 1-1, 1-2 and 1-3 show “Normal” connection polarity

Table 1-1 The enumerated parameters of the current input function

NOTE: The function block has no input and output binary signals, the graphic logic editor does not show this function block.

3.3.3. Voltage input function

3.3.3.1. Application of the voltage input function

The application of the voltage inputs depends on the correct connection of the hardware terminals and also on the correct parameter setting for the VT4 function block. This guide describes examples, based on which any other combinations can be realized.

In the applications of the voltage transformer hardware module, the first three voltage inputs receive the three phase voltages (UL1, UL2, UL3), the fourth input is reserved for zero sequence voltage, for the busbar voltage if synchronized switching is applied or for any additional voltages. Accordingly, the first three inputs have common parameters while the fourth voltage input needs individual setting.

The VT4 function block is an independent module in the sense that:

- It has independent parameters to be set, associated to the voltage inputs,
- It delivers the sampled voltage values for protection, measurement function blocks and for disturbance recording,
- It provides parameters for the subsequent functions blocks for scaling the measured voltages.
- It performs the basic calculations
 - Fourier basic harmonic magnitude and angle,
 - True RMS value.

3.3.3.1.1. Parameter setting

3.3.3.1.1.1. Summary of the parameters

The parameters of the voltage input function are explained in the following tables.

Enumerated parameters

Parameter name	Title	Selection range	Default
Rated secondary voltage of the input channels. 100 V or 200V is selected by parameter setting, no hardware modification is needed.			
VT4_Type_EPar_	Range	Type 100,Type 200	Type 100
Connection of the first three voltage inputs (main VT secondary)			
VT4_Ch13Nom_EPar_	Connection U1-3	Ph-N, Ph-Ph, Ph-N-Isolated	Ph-N
Selection of the fourth channel input: phase-to-neutral or phase-to-phase voltage			
VT4_Ch4Nom_EPar_	Connection U4	Ph-N,Ph-Ph	Ph-Ph
Definition of the positive direction of the first three input channels, given as normal or inverted			
VT4_Ch13Dir_EPar_	Direction U1-3	Normal,Inverted	Normal
Definition of the positive direction of the fourth voltage, given as normal or inverted			
VT4_Ch4Dir_EPar_	Direction U4	Normal,Inverted	Normal

Table 1-1 The enumerated parameters of the voltage input function

Integer parameter

Parameter name	Title	Unit	Min	Max	Step	Default
Voltage correction						
VT4_CorrFact_IPar_	VT correction	%	100	115	1	100

Table 1-2 The integer parameter of the voltage input function

Floating point parameters

Parameter name	Title	Dim.	Min	Max	Default
Rated primary voltage of channel 1, 2, 3					
VT4_PriU13_FPar	Rated Primary U1-3	kV	1	1000	100
Rated primary voltage of channel 4					
VT4_PriU4_FPar	Rated Primary U4	kV	1	1000	100

Table 1-3 The floating point parameters of the voltage input function

NOTE: The rated primary voltage of the channels is not needed for the voltage input function block itself. These values are passed on to the subsequent function blocks.

3.3.3.1.1.2. Setting the rated secondary voltage

The scaling of the voltage depends on parameter setting.

Range

There are basically two standard voltage transformer types: one with secondary rated voltage 100 V, the other with 200 V. Select the parameter value respectively: Type 100, Type 200. No hardware modification is needed. This parameter influences the internal number format and, naturally, accuracy. (A small voltage is processed with finer resolution if 100V is selected.)

VT correction

In some cases the rated secondary of the voltage transformers is not 100V but e.g. 110 V. This parameter is to correct this difference, if the rated secondary voltage of the main voltage transformer does not match the rated input of the device. As an example: if the rated secondary voltage of the main voltage transformer is 110V, then select Type 100 for the parameter "Range" and the required value to set here is 110%.

3.3.3.1.1.3. Setting the connection and the positive direction of the voltages

The connection and direction parameters of the first three VT secondary windings must be set to reflect actual physical connection of the main VTs.

Connection U1-3.

The selection can be: "Ph-N", "Ph-Ph" or "Ph-N-Isolated".

The *Ph-N* option is applied in solidly grounded networks, where the measured phase voltage is never above 1.5*Un. In this case the primary rated voltage of the VT must be the value of the rated PHASE-TO-NEUTRAL voltage.

The *Ph-N-Isolated* option is applied in compensated or isolated networks, where the measured phase voltage can be above 1.5*Un even in normal operation. In this case the primary rated voltage of the VT must be the value of the rated PHASE-TO-PHASE voltage.

The *Ph-Ph* option is to be selected if phase-to-phase voltage is connected to the VT input of the device. Here, the primary rated voltage of the VT must be the value of the rated PHASE-TO-PHASE voltage. This option must not be selected if the distance protection function or directional overcurrent protection function is supplied from the VT input.

Connection U4

The fourth input is reserved for zero sequence voltage or for a voltage from the other side of the circuit breaker for synchronized switching. Accordingly, the connected voltage must be identified with parameter setting Connection U4. Here, phase-to-neutral or phase-to-phase voltage can be selected: "Ph-N", "Ph-Ph"

Direction U1-3

If needed, the phase voltages can be inverted by setting the parameter Direction U1-3. This selection applies to each of the channels UL1, UL2 and UL3. The primary/secondary connection of the VT windings is generally star/star connected and the phase voltages signed with • are connected to the VT4 terminals 1-3-5. In this case the parameter setting is „Normal”. Select “Inverted” to the parameter Direction U1-3 in case of inverted connection of phase voltages.” (See also Figure 1-1 in setting example.)

Direction U4

This parameter applies to the channel UL4. If the voltage signed with • is connected to the VT4 terminal 7 the parameter setting is „Normal”. Select “Inverted” to the parameter Direction U4 in case of inverted connection of the voltage. This inversion may be needed in protection functions such as distance protection or for any functions with directional decision, or for checking the voltage vector positions.

Figure 1-1 shows an example with harmonized connection and parameter setting.

If the voltages are connected not this way then change the parameter values accordingly.

3.3.3.1.1.4. Setting the rated primary voltage

These parameters are needed only to display the voltages (and powers) in primary scale. The protection functions apply secondary values, these parameters are not needed for protection functions.

Rated Primary U1-3 and Rated Primary U-4

Select the rated primary voltages according to the nominal data of the main voltage transformers. The two parameters are: common for the first three channels and one for the fourth channel respectively.

3.3.3.1.2. Application of the on-line measurements in commissioning

The performed basic calculation results the Fourier basic harmonic magnitude and angle value of the voltages. These results are processed by subsequent protection function blocks and they are available for on-line displaying as well.

3.3.3.1.2.1. Summary of the on-line measurements


The **measured values** of the voltage input function block.

Measured value	Dim.	Explanation
Voltage Ch - U1	V(secondry)	Fourier basic component of the voltage in channel UL1
Angle Ch - U1	degree	Vector position of the voltage in channel UL1
Voltage Ch - U2	V(secondry)	Fourier basic component of the voltage in channel UL2
Angle Ch - U2	degree	Vector position of the voltage in channel UL2
Voltage Ch - U3	V(secondry)	Fourier basic component of the voltage in channel UL3
Angle Ch - U3	degree	Vector position of the voltage in channel UL3
Voltage Ch - U4	V(secondry)	Fourier basic component of the voltage in channel U4
Angle Ch - U4	degree	Vector position of the voltage in channel U4

Table 1-4 The measured analogue values of the voltage input function

NOTE1: The scaling of the Fourier basic component is such that if pure sinusoid 57V RMS of the rated frequency is injected, the displayed value is 57V.

NOTE2: The reference vector (vector with angle 0 degree) is the vector calculated for the first voltage input channel of the first applied voltage input module. (The first voltage input module is the one, configured closer to the CPU module.)

3.3.3.1.3. Examples

When the vector position of the voltages are relevant (e.g. distance protection, directional overcurrent protection, power measurement, synchrocheck, etc.) then mind the correct connection of the instrument transformers and the related parameter setting. If the wires of the secondary cables are interchanged then change also the related parameter values.

3.3.3.1.3.1. Phase voltage and residual voltage measurement

Figure 1-1 shows the phase voltage measurement and also the residual voltage measurement e.g. for residual directional overcurrent protection function. In this example the residual voltage is measured in open delta of the VT secondary coils. The network is supposed to be compensated. This figure also indicates the proposed parameter values.

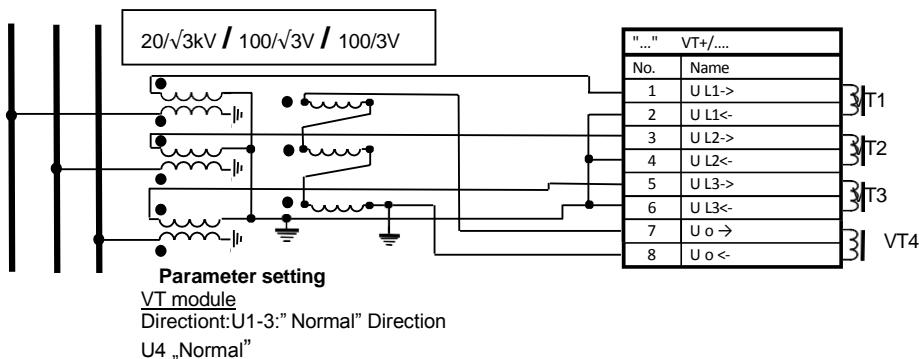


Figure 1-1 Example: Phase voltage and residual voltage measurement

Range	Type 100	The type indicates the rated secondary voltage of the VT. This can be 100 V (in this example) or 200V
Connection U1-3	Ph-N-Isolated	This indicates that the VT primary is connected between the conductor and the ground (in this example in compensated network). This could be Ph-N or Ph-Ph in other application. (NOTE: If the neutral of the system is not grounded, select Ph-N-Isolated)
Connection U4	Ph-Ph	In case of earth fault the open delta measures 100 V. This corresponds to the phase-to-phase value
Direction U1-3	Normal	Figure 1-1 shows the normal VT connection, i.e. the signed • phase wires are connected to the terminals 1-3-5. (Select "Inverted" in case of inverted connection.)
Direction U4	Normal	Figure 1-1 shows the normal VT connection, i.e. the signed • wire of the open delta of VT-s is connected to the terminal 7. (Select "Inverted" in case of inverted connection.)
VT correction	100	If the rated secondary value of the VT is e.g. 110 V then select this correction value to 110%.
Rated Primary U1-3	20	Setting, according to the VT rated voltage, applied at the primary side. This parameter is used for scaling the displayed values only.
Rated Primary U4	11.55	This parameter is used for scaling the displayed values only. In case of earth fault, the open delta measures 100 V. In primary value it is displayed as the phase voltage in the 20 kV network.

Table 1-5 Example parameters for the voltage input function

3.3.3.1.3.2. Syncrocheck using phase-to neutral voltage

Figure 1-2 shows the application of the fourth voltage input of the VT module for syncrocheck function. Here UL2 of the busbar voltage is used for this purpose.

NOTE: Among syncrocheck parameters set "Voltage select" parameter to "L2-N".

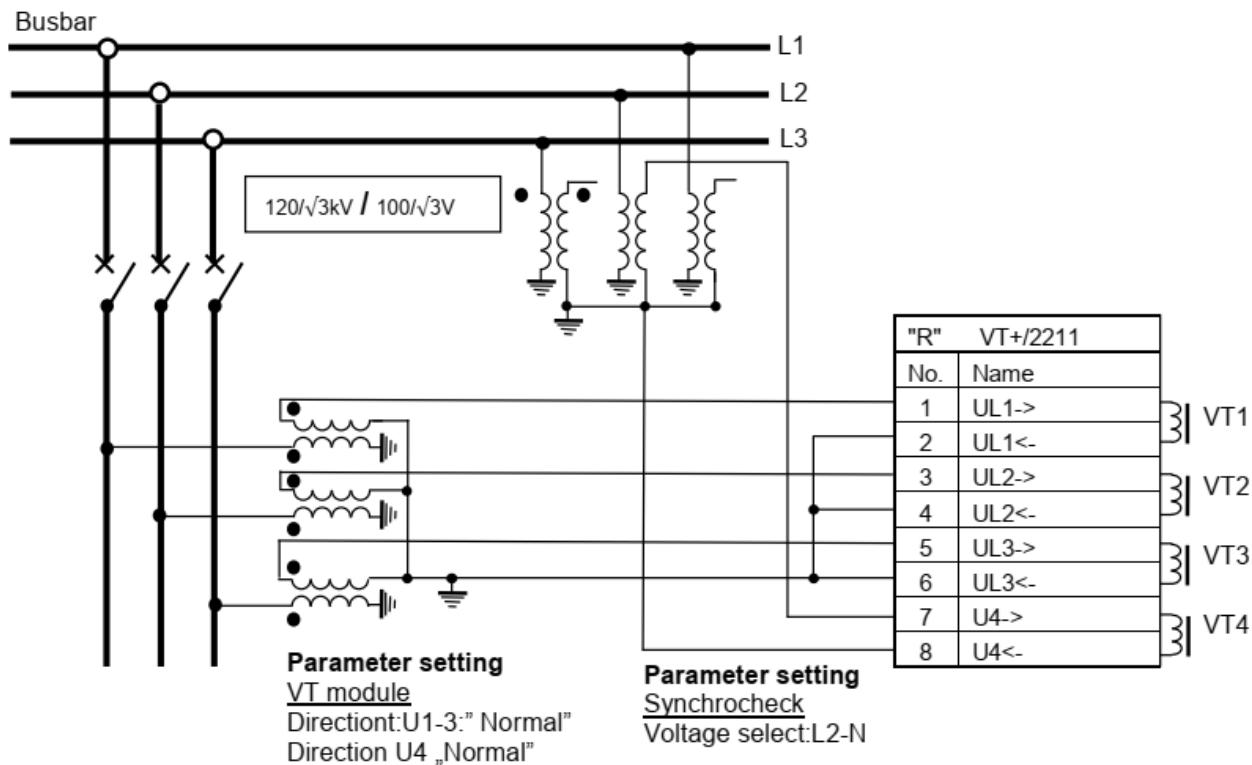


Figure 1-2 Example: Syncrocheck, using phase-to-neutral voltage

Figure 1-3 shows the screenshot indicating the proposed parameter values.

[-] VT4 module "U"

Device value (Default_set_1)	New value	
Range	Type 100	
Connection U1-3	Ph-N	
Connection U4	Ph-N	
Direction U1-3	Normal	
Direction U4	Normal	
VT correction	100	% (100 - 115 / 1)
Rated Primary U1-3	69.28	kV (1.00 - 1000.00 / 0.01)
Rated Primary U4	69.28	kV (1.00 - 1000.00 / 0.01)

Figure 1-3 Example:Parameters for syncrocheck, using phase-to-neutral voltage

The "On-line window" of the VT4 input module shows the checking the correct voltage vector position. When the line is connected to the busbar, i.e. the CB is closed, in this example the U4 voltage is expected to have the same value and position as U2. See Figure 1-4.

Figure 1-4 Example: On-line measurement for syncrocheck, using phase-to-neutral voltage

3.3.3.1.3.3. Syncrocheck using phase-to-phase voltage

Figure 1-5 shows the application of the fourth voltage input of the VT module for syncrocheck function. Here UL1-UL3 line-to-line signal of the busbar voltage is used for this purpose.

NOTE: Among syncrocheck parameters set "Voltage select" parameter to "L3-L1". This selection is opposite to that, of the connected voltage. This can be corrected selecting the "Direction U4" parameter value to "Inverse".

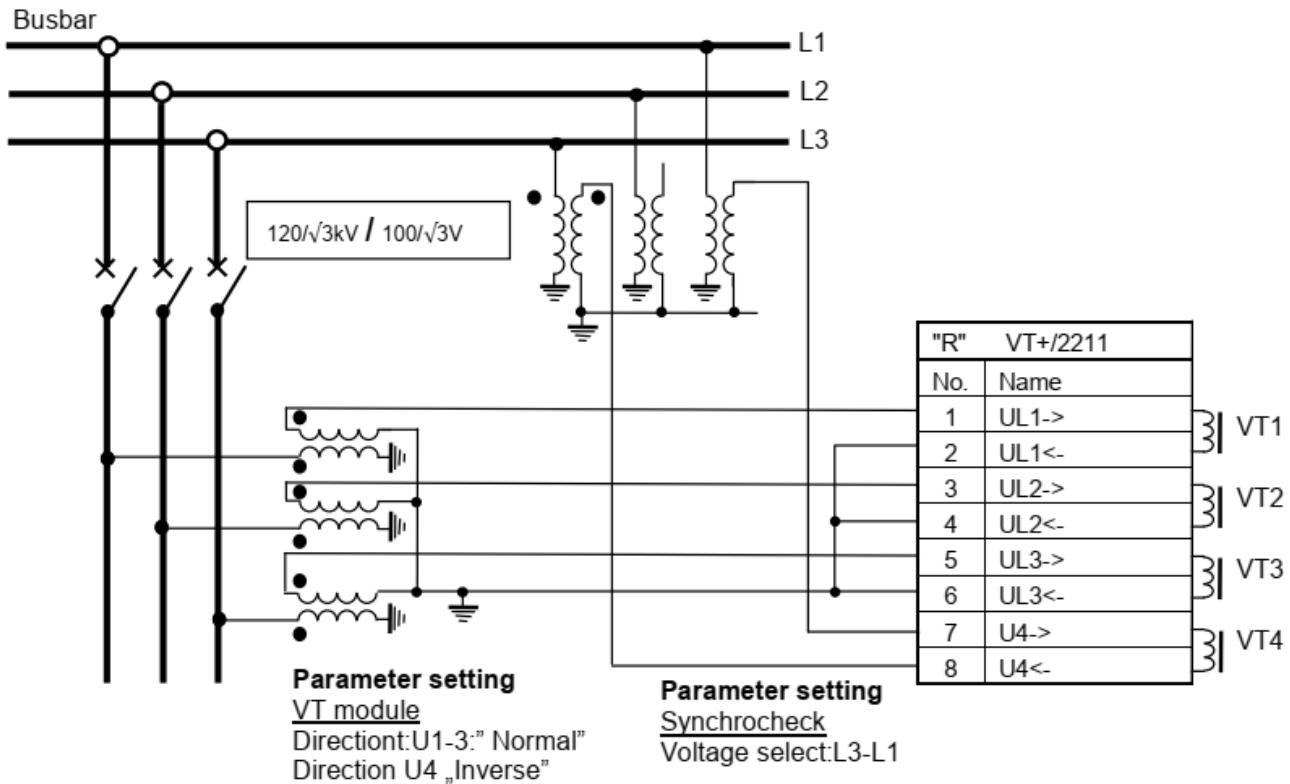



Figure 1-5 Example: Syncrocheck, using phase-to-phase voltage

Figure 1-6 shows the proposed parameter values for the connection shown above.

[-] VT4 module "U"

Device value (Default_set_1)	New value		
Range	Type 100		
Connection U1-3	Ph-N		
Connection U4	Ph-Ph		
Direction U1-3	Normal		
Direction U4	Inverted		
VT correction	100	100	% (100 - 115 / 1)
Rated Primary U1-3	69.28	69.28	kV (1.00 - 1000.00 / 0.01)
Rated Primary U	120.00	120.00	kV (1.00 - 1000.00 / 0.01)

Figure 1-6 Example: Parameters for syncrocheck, using phase-to-pase voltage

The “On-line window” of the VT4 input module shows the checking the correct voltage vector position. When the line is connected to the busbar, i.e. the CB is closed, in this example the U4 voltage is expected to have a vector identical with the voltage difference U3-U1. See Figure 1-7.

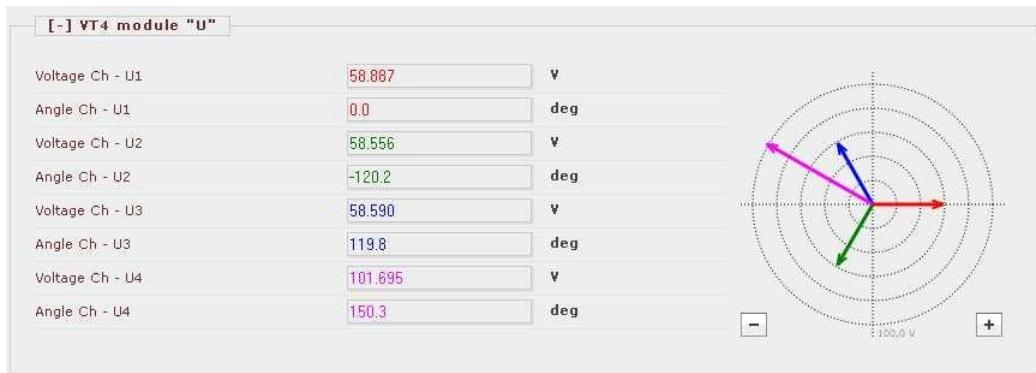


Figure 1-7 Example: On-line measurement for syncrocheck, using phase-to-phase voltage

NOTE that due to the reverse connection of the voltage difference and the parameter setting also reverted by “Inverse” setting, the indicated U4 vector corresponds to the parameter “Voltage select=L3-L1” among syncrocheck parameters.

3.3.4. Line and frequency measurement functions

3.3.4.1. Application

The input values of the EuroProt+ devices are the secondary signals of the voltage transformers and those of the current transformers when they are available in the actual configuration.

These signals are pre-processed by the “VT4 module” voltage input function block and by “CT4 module” the current input function block. These function blocks are described in separate documents. The pre-processed values include the Fourier basic harmonic phasors of the voltages and currents and the true RMS values. Additionally, it is in these function blocks that parameters are set concerning the voltage ratio of the primary voltage transformers and current ratio of the current transformers.

Based on the pre-processed values and the measured transformer parameters, the measurement function blocks calculate - depending on the hardware and software configuration - the primary RMS values of the voltages and currents and some additional values such as active and reactive power, symmetrical components of voltages and currents. These values are available as primary quantities and they can be displayed on the on-line screen of the device or on the remote user interface of the computers connected to the communication network and they are available for the SCADA system using the configured communication system.

3.3.4.2. Mode of operation

The **inputs** of the line measurement function are

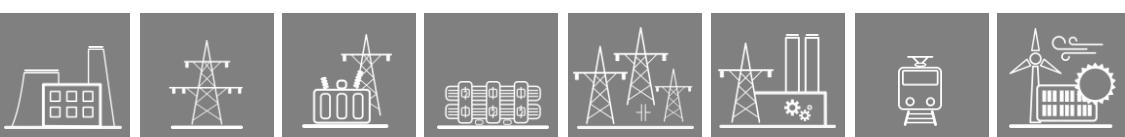
- the Fourier components and true RMS values of the measured voltages and currents,
- frequency measurement,
- parameters.

The **outputs** of the line measurement function are

- displayed measured values,
- reports to the SCADA system.

NOTE: the scaling values are entered as parameter setting for the “Voltage transformer input” function block and for the “Current transformer input” function block.

3.3.4.3. The measurement


3.3.4.3.1. The measured values; variants of the function

There are six variants of the MXU function, based on their **measured values**. Parameters and measurements are alike for each. The **type of the variant** is shown in the *function block name*:

- Line Measurement (*MXU_LM*)
- Frequency Measurement (*MXU_F*)
- Voltage measurement (*MXU_V*)
- Voltage measurement (*MXU_V1*) (single voltage)
- Current measurement (*MXU_C*)
- Current measurement (*MXU_C1*) (single current)

Table 1-1 Measured values of each variant

ON-LINE MEASURED VALUE	EXPLANATION	MXU FUNCTION BLOCK VARIANT					
		LM	F	V	V1	C	C1
MXU_P_OLM_	Active Power – P (Fourier base harmonic value)	X					
MXU_Q_OLM_	Reactive Power – Q (Fourier base harmonic value)	X					
MXU_S_OLM_	Apparent Power – S (Fourier base harmonic value)	X					
MXU_Fi_OLM_	Power factor	X					
MXU_I1_OLM_	Current L1	X				X	X
MXU_I2_OLM_	Current L2	X				X	
MXU_I3_OLM_	Current L3	X				X	
MXU_Ipos_OLM_	Calculated positive seq. current	X				X	
MXU_Ineg_OLM_	Calculated negative seq. current	X				X	
MXU_3Io_OLM_	Calculated 3Io	X				X	
MXU_U1_OLM_	Voltage L1	X		X	X		
MXU_U2_OLM_	Voltage L2	X		X			
MXU_U3_OLM_	Voltage L3	X		X			
MXU_U12_OLM_	Voltage L12	X		X			
MXU_U23_OLM_	Voltage L23	X		X			
MXU_U31_OLM_	Voltage L31	X		X			
MXU_Upos_OLM	Calculated positive seq. voltage	X		X			
MXU_Uneg_OLM_	Calculated negative seq. voltage	X		X			
MXU_3Uo_OLM_	Calculated 3Uo	X		X			
MXU_f_OLM_	Frequency		X	X			

3.3.4.3.2. The measurement modes

Regarding the power measurements there are two possibilities for the measurement modes. The first one is the “ThreePhase”-method, where all three measured voltages and currents are considered in the power calculation. The second one is the “Aron”-method, where two phase-to-phase voltages and two phase currents are taken into the calculation. This method has correct results only in case when the voltages and currents are symmetrical. The user can choose the mode with the “Measurement mode” parameter. For the “Aron”-method there are three options:

Table 1-2 Explanation for the Aron measurement modes

Measurement mode	Used phase-currents	Used phase-to-phase voltages
Aron L2-L3	L2, L3	L1-L2, L3-L1
Aron L3-L1	L1, L3	L1-L2, L2-L3
Aron L1-L2	L1, L2	L2-L3, L3-L1

If the “Connection U1-3” parameter of the *VT4 module* function block is set to “Ph-Ph”, the “ThreePhase”-method cannot be used for the power measurements here, so either of the “Aron” methods must be set for it. Otherwise, the device will provide a warning signal (yellow Status LED, “General param. error” message).

3.3.4.4. Reporting the measured values and the changes

It is usual for the SCADA systems that they sample the measured and calculated values in regular time periods and additionally they receive the changed values as reports at the moment when any significant change is detected in the primary system. The “Line measurement” function block performs such reporting for the SCADA system. Three parameters define this reporting:

- *Report Deadband* for choosing the type of reporting, or disabling the reporting
- *Deadband Value* for defining the deadband width
- *Range (value)* for evaluating the “out-of-range” condition

The usage of these parameters is explained in the following chapters.

3.3.4.4.1. “Amplitude” mode of reporting

If the “Amplitude” mode is selected for reporting, a report is generated if the measured value leaves the deadband around the previously reported value. As an example, [Figure 1-1](#) shows that the current becomes higher than the value reported in “report1” PLUS the Deadband value, this results “report2”, etc.

For this mode of operation, the Deadband parameters are explained in the figure below.

NOTE: The “Range” parameters are needed to evaluate a measurement as “out-of-range”.

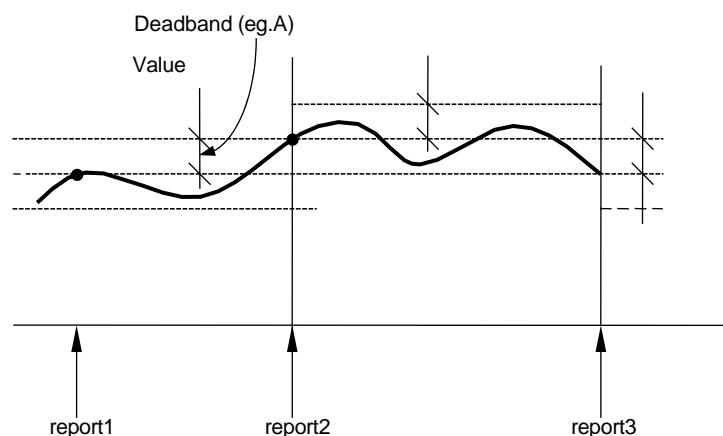


Figure 1-1 Reporting if “Amplitude” mode is selected

3.3.4.4.2. “Integrated” mode of reporting

If the “Integrated” mode is selected for reporting, a report is generated if the time integral of the measured value since the last report gets becomes larger, in the positive or negative direction, then the (deadband*1sec) area. As an example, [Figure 1-2](#) shows that the integral of the current in time becomes higher than the Deadband value multiplied by 1sec, this results “report2”, etc.

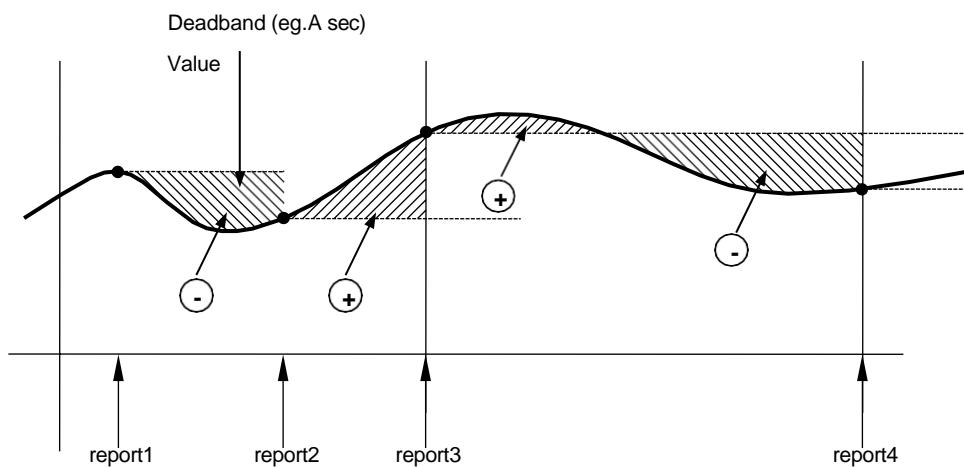


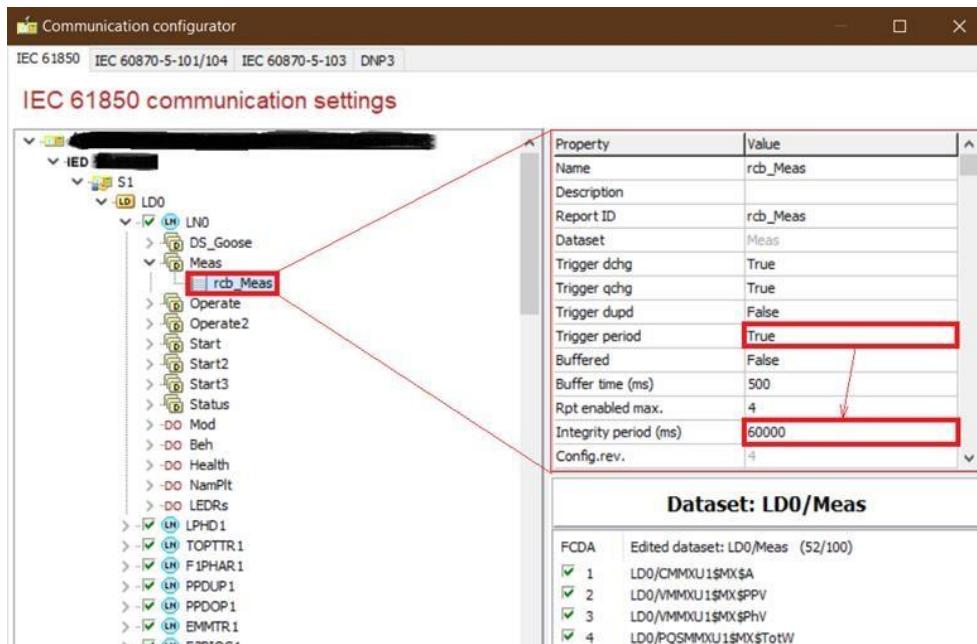
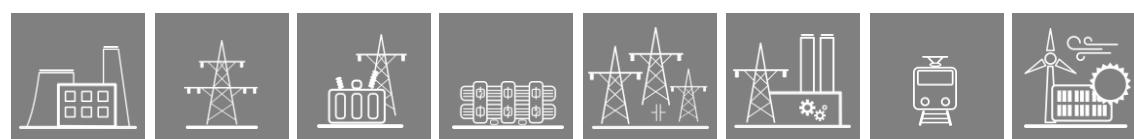
Figure 1-2 Reporting if “Integrated” mode is selected

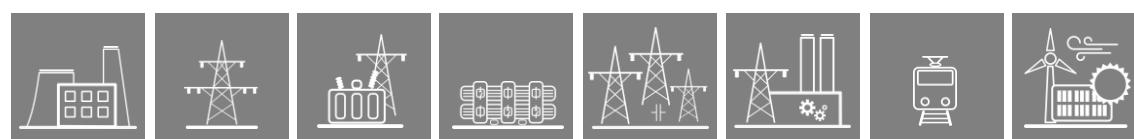
3.3.4.4.3. Periodic reporting

Periodic reporting is generated independently of the changes of the measured values when the defined time period elapses. If the reporting time period is set to 0, then no periodic reporting is performed for this quantity.

Applying periodic reporting and setting up its interval is done by using the **Communication configurator**, a part of the **EuroCAP** software (see its description for detailed information).

Once the “Trigger period” property is set to “True”, the “Integrity period” setting becomes available to set (in milliseconds). As an example, see the picture below.


Figure 1-3 Setting up periodic reporting in EuroCAP

3.3.4.4.4. Zero-point clamping

A measured value under the zero-point clamping limit is cut off to zero.

- Three-phase current measurement 0.2% of nominal (I_n)
- Three-phase voltage measurement 2% of nominal (U_n)
- Residual current measurement 0.2% of nominal (I_n)
- Residual voltage measurement 2% of nominal (U_n)
- Phase sequence current measurement 0.2% of the nominal (I_n)
- Phase sequence voltage measurement 2% of the nominal (U_n)
- Three-phase power and energy measurement 0.23% of the nominal (S_n)

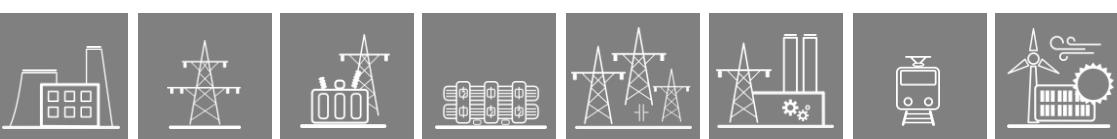
3.3.4.5. Line and frequency measurement functions overview

3.3.4.5.1. Settings

3.3.4.5.1.1. Parameters

The following parameters are the parameters of the Line Measurement and Frequency measurement function blocks (LM and F variants). The other functions' parameters follow the pattern of the corresponding measured values.

Table 2-1 Parameters of the line measurement function


TITLE	DIM	RANGE**	STEP	DEFAULT	EXPLANATION
Measurement mode	-	Aron L2-L3, Aron L3-L1, Aron L1-L2, ThreePhase	-	ThreePhase	Measurement mode
Report Deadband - U	-	Off, Amplitude, Integrated	-	Amplitude	Selection of the reporting mode for voltage measurement
Deadband Value - Uph-N	kV*	0.10 – 100.00	0.01	5	Deadband value for the phase-to-neutral voltage
Range Value - Uph-N	kV*	1.0 – 1000.0	0.1	231	Range value for the phase-to-neutral voltage
Deadband Value Uph-ph	kV*	0.10 – 100.00	0.01	5	Deadband value for the phase-to-phase voltage
Range Value - Uph-ph	kV*	1.0 – 1000.0	0.1	400	Range value for the phase-to-neutral voltage
Deadband Value - U Res	kV*	0.10 – 100.00	0.01	5	Deadband value for the residual voltage
Range Value - U Res	kV*	1.0 – 1000.0	0.1	20	Range value for the residual voltage
Deadband Value - Uneg	kV*	0.10 – 100.00	0.01	5	Deadband value for the negative seq. voltage
Range Value - Uneg	kV*	1.0 – 1000.0	0.1	231	Range value for the negative seq. voltage
Deadband Value - Upos	kV*	0.10 – 100.00	0.01	5	Deadband value for the positive seq. voltage
Range Value - Upos	kV*	1.0 – 1000.0	0.1	231	Range value for the positive seq. voltage
Report Deadband - I	-	Off, Amplitude, Integrated	-	Amplitude	Selection of the reporting mode for current measurement
Deadband Value - I	A	1 – 2000	1	10	Deadband value for the current
Range Value - I	A	1 – 5000	1	500	Range value for the current
Deadband Value - I Res	A	1 – 500	1	10	Deadband value for the residual current
Range Value - I Res	A	1 – 1000	1	100	Range value for the residual current
Deadband Value - Ineg	A	1 – 2000	1	10	Deadband value for the negative seq. current
Range Value - Ineg	A	1 – 5000	1	500	Range value for the negative seq. current
Deadband Value - Ipos	A	1 – 2000	1	10	Deadband value for the positive seq. current

Range Value - Ipos	A	1 – 5000	1	500	Range value for the positive seq. current
Report Deadband - P	-	Off, Amplitude, Integrated	-	Amplitude	Selection of the reporting mode for active power measurement
Deadband Value - P	kW*	0.10 – 10000.00	0.01	10	Deadband value for the active power
Range Value - P	kW*	1.00 – 100000.00	0.01	500	Range value for the active power
Report Deadband - Q	-	Off, Amplitude, Integrated	-	Amplitude	Selection of the reporting mode for reactive power measurement
Deadband Value - Q	kVAr*	0.10 – 10000.00	0.01	10	Deadband value for the reactive power
Range Value - Q	kVAr*	1.00 – 100000.00	0.01	500	Range value for the reactive power
Report Deadband - S	-	Off, Amplitude, Integrated	-	Amplitude	Selection of the reporting mode for apparent power measurement
Deadband Value - S	kVA*	0.10 – 10000.00	0.01	10	Deadband value for the apparent power
Range Value - S	kVA*	1.00 – 100000.00	0.01	500	Range value for the apparent power
Report Deadband	Hz	Off, Amplitude, Integrated	-	Amplitude	Selection of the reporting mode for frequency measurement
Deadband Value	Hz	0.01 – 1.00	0.01	0.03	Deadband value for the frequency
Range Value	Hz	0.05 – 10.00	0.01	5	Range value for the frequency

*the prefixes can change (i.e. kW→MW, kV→V etc.) depending on the configuration; changing these is done by Protecta personnel

**if the setting range is to be extended, contact Protecta personnel

3.3.4.5.2. Function I/O

This section describes briefly the analogue and digital inputs and outputs of the function block.

3.3.4.5.2.1. Analogue inputs

The analogue inputs of the measurement functions are

- the Fourier components and true RMS values of the measured and calculated secondary voltages
- the Fourier components and true RMS values of the measured secondary currents,

3.3.4.5.2.2. Analogue outputs (measurements)

See the next chapter (On-line data) for the listing of all measurements. Note again, that the measured values depend on the type of the actual measurement function block, see Chapter [1.3.1](#)

3.3.4.5.2.3. On-line data

The **on-line data** of the line measurement function depend on the available analogue values which are referring to the applied hardware configuration.

Visible values on the on-line data page:

Table 2-2 On-line data of the line measurement function

SIGNAL TITLE	DIMENSION	EXPLANATION
Power - P	kW*	Calculated three-phase active power
Reactive Power - Q	kVAr*	Calculated three-phase reactive power
Apparent Power - S	kVA*	Calculated three-phase apparent power
Power factor	-	Calculated power factor
Current L1	A	Measured primary current L1 based on the nominal values of the CT4 current input function
Current L2	A	Measured primary current L2 based on the nominal values of the CT4 current input function
Current L3	A	Measured primary current L3 based on the nominal values of the CT4 current input function
Positive sequence current	A	Calculated positive sequence current from the three phase currents
Negative sequence current	A	Calculated negative sequence current from the three phase currents
Calculated 3Io	A	Calculated 3Io from the three phase currents
Voltage L1	kV*	Measured primary L1 phase voltage L1 based on the nominal values of the VT4 voltage input function
Voltage L2	kV*	Measured primary L2 phase voltage L2 based on the nominal values of the VT4 voltage input function
Voltage L3	kV*	Measured primary L3 phase voltage L3 based on the nominal values of the VT4 voltage input function
Voltage L12	kV*	Calculated L12 phase-to-phase voltage
Voltage L23	kV*	Calculated L23 phase-to-phase voltage
Voltage L31	kV*	Calculated L31 phase-to-phase voltage
Positive sequence voltage	kV*	Calculated positive sequence voltage from the three phase voltages
Negative sequence voltage	kV*	Calculated negative sequence voltage from the three phase voltages
Calculated 3Uo	kV*	Calculated 3Uo from the three phase voltages
Frequency	Hz	Measured frequency

*the prefixes may be different (i.e. kW→MW, kV→V etc.) depending on the configuration; changing these is done by Protecta personnel

3.3.4.5.3. Technical data

Table 2-3 Technical data of the line measurement function (power)

POWER MEASUREMENT (P, Q, S)*	RANGE	ACCURACY
HW MODULES		
CT+/5115	0,002 – 0,01 ln	±3%, ±1 digit
	0,01 – 0,03 ln	±1%, ±1 digit
	0,03 – 5 ln (max. 5 ln for measurement purposes)	±0,5%, ±1 digit
CT+/1500**	0,002 – 0,005 ln	±1,5%, ±1 digit
	0,005 – 0,02 ln	±0,5%, ±1 digit
	0,02 – 2 ln	±0,2%, ±1 digit
CT+/5151** CT+/5153 (Channel 1-3)	0,02 – 0,05 ln	±3%, ±1 digit
	0,05 – 20 ln	±0,5%, ±1 digit

* By using VT+/2211 with nominal voltage.

** The defined accuracy regarding the CT+/1500 and CT+/5151 modules are valid from 2020/Q2 or on customer request. For the values before this date, see [Table 2-7](#) in the next chapter.

Table 2-4 Technical data of the line measurement function (currents)

CURRENT MEASUREMENT (PHASE AND SEQUENTIAL)	RANGE	ACCURACY
HW MODULES		
CT+/5115	0,002 – 0,01 ln	±3%, ±1 digit
	0,01 – 0,03 ln	±1%, ±1 digit
	0,03 – 5 ln (max. 5 ln for measurement purposes)	±0,5%, ±1 digit
CT+/1500*	0,002 – 0,005 ln	±1,5%, ±1 digit
	0,005 – 0,02 ln	±0,5%, ±1 digit
	0,02 – 2 ln	±0,2%, ±1 digit
CT+/5151* CT+/5153 (Channel 1-3)	0,02 – 0,05 ln	±3%, ±1 digit
	0,05 – 20 ln	±0,5%, ±1 digit

* The defined accuracy regarding the CT+/1500 and CT+/5151 modules are valid from 2020/Q2 or on customer request. For the values before this date, see [Table 2-7](#) in the next chapter.

Table 2-5 Technical data of the line measurement function (voltages)

VOLTAGE MEASUREMENT (PHASE, PHASE-TO-PHASE, SEQUENTIAL)	RANGE	ACCURACY
HW MODULES		
VT+/2211	0,05 – 1,5 Un	±0,5%, ±1 digit

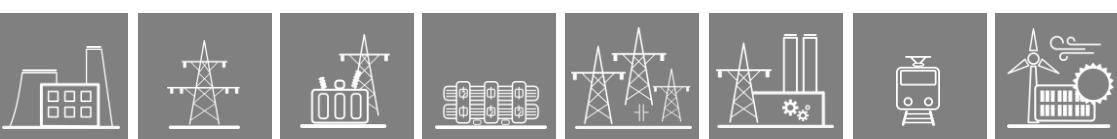
Table 2-6 Technical data of the frequency measurement function

FREQUENCY MEASUREMENT	VALUE	ACCURACY
Frequency	40 - 60 Hz (50 Hz system) 50 - 70 Hz (60 Hz system)	± 2 mHz

3.3.4.5.3.1. Notes for testing

If there are no measurements seen on the SCADA software, check the Report Deadband parameter and/or the settings of the periodic reporting in the Communication Configurator. The former's default value is 'Off', and the latter's is 'False', which means that by default, the reporting is disabled. It must be enabled first.

The **periodic reporting** is defined in the device configuration file (.epc/.epcs) using EuroCAP. See Chapter [1.4.3](#). This also means that changing the properties of this will require loading a new configuration file to the device (hence a full device restart).



If the "Connection U1-3" parameter of the *VT4 module* function block is set to "Ph-Ph", the "ThreePhase"-method cannot be used for the power measurements here, so either of the "Aron" methods must be set for it. Otherwise, the device will provide a warning signal (yellow Status LED, "General param. error" message).

For the devices shipped with modules manufactured before 2020/Q2, the technical data table is different:

Table 2-7 Technical data of the line measurement function

HARDWARE MODULE	RANGE	ACCURACY
CT+/5151 or CT+/5102	0,2 ln – 0,5 ln	±2%, ±1 digit
	0,5 ln – 20 ln	±1%, ±1 digit
CT+/1500	0,03 ln – 2 ln	±0,5%, ±1 digit

3.3.5. Average and maximum measurement function

3.3.5.1. The measurement

The input values of the EuroProt+ devices are the secondary signals of the voltage transformers and those of the current transformers.

These signals are pre-processed by the “Voltage transformer input” function block and by the “Current transformer input” function block. These function blocks are described in separate documents. The pre-processed values include the Fourier basic harmonic phasors of the voltages and currents and the true RMS values. Additionally, it is in these function blocks that parameters are set concerning the voltage ratio of the primary voltage transformers and current ratio of the current transformers.

Based on the pre-processed analog signals, several function blocks perform additional calculation, e.g.: active and reactive power, frequency, temperature, impedances, higher harmonics, symmetrical components, etc.

The “Average and maximum” function block calculates average values and locates maximum values of the assigned (measured and calculated) analog signals.

3.3.5.2. Operation of the function block

The **input** of the function can be:

- Any single calculated analog value: active and reactive power, frequency, temperature, impedances, higher harmonics, symmetrical components, etc. depending on the assignment in the configuration.

The **outputs** of the function are:

- Average of the analog value,
- Maximum of the analog value.

The average and the maximum values are automatically reported to the SCADA system. The maximum is logged and is sent automatically to the HMI, the average however is logged only if a binary input of the function block enables this activity.

3.3.5.3. Reporting the values

The average calculation needs a time span for calculation; this is given as a parameter value, set in minutes (or the function is switched off). When the timer expires, the calculated average is reported automatically to the SCADA system. Depending on the requirements, this value is also logged and is sent to the local HMI. This activity is controlled by a binary input of the function block.

The identification of the maximum value needs also a time span; this is given as a parameter value, set in days. When the timer expires, the found maximum value is reported automatically to the SCADA system. Additionally this value is also logged and is sent to the local HMI.

The starting of the timer is controlled by the internal real-time clock of the device. The moment of time for the starting of the processing cycles is set by a parameter value.

3.3.5.4. Parameters of the function block

Enumerated parameter

Parameter name	Title	Selection range	Default
Time window for averaging			
MXU_TimWin_EPar_T	Average TimeWindow	Off,5min,10min,15min,30min,60min	Off

Table 1-1 The enumerated parameters of the average and maximum measurement function

Integer parameter

Parameter name	Title	Unit	Min	Max	Step	Default
Time window for finding the maximum value						
MXU_MaxResInt_IPar_T	MaxReset Interval	day	0	365	1	1
Moment of time for reporting and reset						
MXU_MaxResTime_IPar_T	MaxReset Time	hour	0	23	1	12

Table 1-2 The integer parameters of the average and maximum measurement function

3.3.5.5. Status signals of the function block

The average and maximum measurement function block has **binary input signals**, which serve the purpose of resetting the values and enabling logging the average value. **The conditions are defined by the user, applying the graphic equation editor.**

Binary status signal	Explanation
MXU_Reset_GrO_IL1 *	This signal resets both the calculated average and the found maximum value. At the end of the running cycles, the values found during the shortened cycle will be processed.
MXU_DemHMIEna_GrO_IL1	During the active state of this signal also the calculated average value is logged

* Note: In this example "IL1" is indicating that in the instant of the function block processes the RMS value of the current in line 1

Table 1-3 The binary input signal for the average and maximum measurement function block

The average and maximum measurement function block **has no binary output signals**.

3.3.5.6. The function block

The function block of the average and maximum measurement function is shown in Figure 1-1. This block shows all binary input (and output) status signals that are applicable in the graphic equation editor.

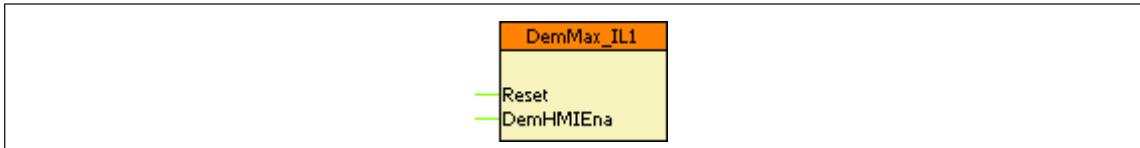


Figure 1-1 The function block of the average and maximum measurement function block

3.3.6. Metering

3.3.6.1. Application

The metering function can be applied to calculate the active and reactive energy supply and demand values based on the own measurement of the device or the energy meter impulses.

3.3.6.1.1. Mode of operation

There is an “Input selection” parameter to select the input of energy the calculation “Measurement” or “Impulse”. Chapter 1.1.1 and Chapter 1.1.2 describe the difference of operation.

3.3.6.1.2. Measurement mode

The input values of the EuroProt+ devices are the secondary signals of the voltage transformers and those of the current transformers.

These signals are pre-processed by the “Voltage transformer input” function block and by the “Current transformer input” function block. These function blocks are described in separate documents. The pre-processed values include the Fourier basic harmonic phasors of the voltages and currents. Additionally, it is in these function blocks that parameters are set concerning the voltage ratio of the primary voltage transformers and current ratio of the current transformers.

Based on the pre-processed values and the transformer parameters, the “Line measurement” function block calculates “P” and “Q” values in every process cycle and based on these values the “Metering” function block calculates the active and reactive power supply and demand. These values are accumulated to obtain, separately:

- Active power demand,
- Active power supply,
- Reactive power demand,
- Reactive power supply,

This means that the positive and negative values are accumulated separately.

The time period of the accumulation is defined by parameter setting. It can be selected in a broad range. The start of the accumulation is based on the integrated real-time clock of the device. For example, for the “Time Interval” setting of 15min, the trigger is: at 0h0min, 0h15min, 0h30min, 0h45 min, 1h0min, etc.

When the accumulation time is over, the calculated values are reported to the SCADA system. The displayed values change continuously.

The calculated values are available as primary quantities, and they can be displayed on the on-line screen of the device or on the webpage of the device and they are available for the SCADA system using the configured communication system.

The **inputs** of the metering function are:

- the Fourier components of the measured voltages and currents,
- parameters.

The **output** of the metering function is:

- displayed measured values.

NOTE: the scaling values are entered as parameter setting for the “Voltage transformer input” function block and for the “Current transformer input” function block.

3.3.6.1.3. Impulse mode

Based on the external energy meter impulses. These impulse outputs of the meter connect as binary inputs. Metering function block calculates the active and reactive power supply and demand. These values are accumulated to obtain, separately:

- Active power demand,
- Active power supply,
- Reactive power demand,
- Reactive power supply,

Impulse scaling values are entered as parameters named “Active pulse scale” and “Reactive pulse scale”.

The time period of the accumulation is defined by parameter setting. It can be selected in a broad range. The start of the accumulation is based on the integrated real-time clock of the device. For example, for the “Time Interval” setting of 15min, the trigger is: at 0h0min, 0h15min, 0h30min, 0h45 min, 1h0min, etc.

When the accumulation time is over, the calculated values are reported to the SCADA system. The displayed values change continuously.

The calculated values are available as primary quantities and they can be displayed on the on-line screen of the device or on the webpage of the device and they are available for the SCADA system using the configured communication system

The **inputs** of the metering function are:

- the impulses of energy meter,
- parameters.

The **output** of the metering function is:

- displayed measured values.

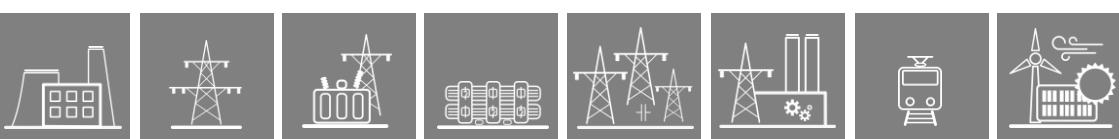
3.3.6.1.4. Cumulation mode

“Cumulation mode” parameter defines the mode of operation. It can be “TRUE” or “FALSE”.

In “FALSE” mode the values set to zero after the values are reported to the SCADA system, based on the “Time Interval” settings.

In “TRUE” mode the values are cumulated after the report is sent to the SCADA system.

Maximum cumulated value depends on the CT module of IED and the primary nominals of CT and VT.


“Nominal primary power” = “Rated Primary U1-3” setting of VT module multiplied by “Rated Primary I1-3” setting of CT module. Unit prefix (kilo- or Mega) depends on the configuration, the “Line measurement” function uses the same unit prefix as Metering.

Maximum cumulated power value with CT+/1500 module = 3 259 602 multiplied by “Nominal primary power”

Maximum cumulated power value with CT+/5151 module = 65 192 055 multiplied by “Nominal primary power”

Maximum cumulated power value with CT+/5115 module = 8 149 006 multiplied by “Nominal primary power”

User can reset cumulated value to zero either by initiating the reset input of Metering function block or by restarting the device.

3.3.6.1.5. The measurement

3.3.6.1.5.1. Reference direction

“Reference direction” parameter setting defines the direction when voltage and current vectors are in phase. Setting can be “Demand” or “Supply”.

3.3.6.1.5.2. The measured values

Unit prefix of the **measured values** of the metering function depends on the configuration: it can be **kilo** or **Mega**. The “Line measurement” function uses the same unit prefix as the Metering.

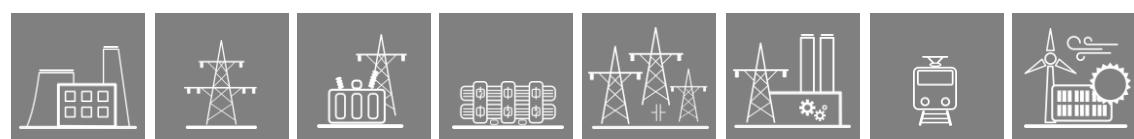
MEASURED VALUE	EXPLANATION
MTR_PosP_OLM_	Demand kWh – active power consumption
MTR_NegP_OLM_	Supply kWh – active power supply
MTR_PosQ_OLM_	Demand kVArh – reactive power consumption
MTR_NegQ_OLM_	Supply kVArh – reactive power supply

Table 1-1 Measured values of the metering function

The measured values available are shown as on-line information, see the figure below.

Demand kWh	400.0	kWh
Supply kWh	300.0	kWh
Demand kVArh	500.0	kVArh
Supply kVArh	2500.0	kVArh

Figure 1-1 Measured values of the metering function


3.3.6.1.6. Parameter setting

The time period of accumulation is defined by parameter setting. This can be selected in a broad range, as it is shown in Table 1-2.

Enumerated parameter

PARAMETER NAME	TITLE	SELECTION RANGE	DEFAULT
Selection of the time period for power metering			
MTR_TimInt_EPar_	Time Interval	Off, 5min, 10min, 15min, 30min, 60min	30min

Table 1-2 The enumerated parameter of the metering function

3.3.6.2. Metering function overview

The graphic appearance of the function block of the metering function is shown below. The block shows all binary input and output status signals which are applicable in the graphic equation editor.

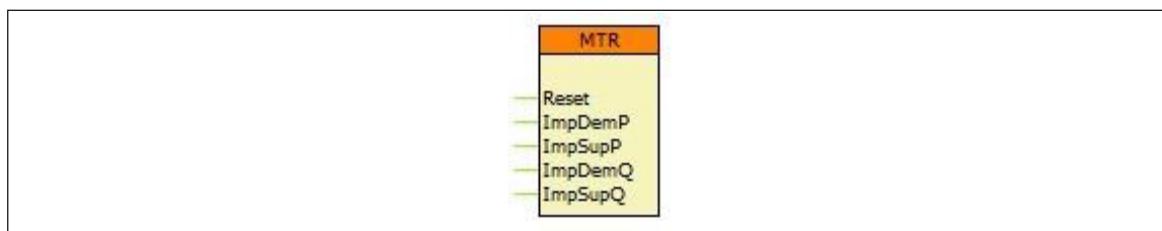
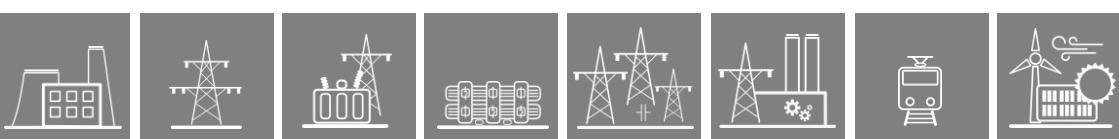


Figure 2-1 Graphic appearance of the function block of the metering function


3.3.6.2.1. Settings

3.3.6.2.1.1. Parameters

The available parameters are listed below in order of their appearance in the *parameters* menu. If the setting range of a parameter should be extended, contact Protecta Support.

Table 2-1 The available parameters of the metering function

TITLE	DIM.	RANGE	STEP	DEFAULT	EXPLANATION
Time Interval	-	Off, 5min (On), 10min , 15min , 30min , 60min	-	30min	Time period of accumulation parameter for general operation of the function:
Input selection	-	Measurement, Impulse,	-	Measurement	Input selection of energy calculation
Cumulation mode		FALSE,TRUE		FALSE	Cumulation mode is used
Reference direction	-	Demand, Supply	-	Demand	Energy direction reference selection.
Active pulse scale	kWh/ pulse	1 - 10000	1	100	One impulse of energy meter is equal to this setting
Reactive pulse scale	kVarh/ pulse	1 - 10000	1	100	One impulse of energy meter is equal to this setting

3.3.6.2.2. Function I/O

This section describes briefly the analogue and digital inputs and outputs of the function block.

3.3.6.2.2.1. Analogue inputs

The function uses the sampled values of a voltage and current inputs. This is defined in the configuration.

3.3.6.2.2.2. Analogue outputs (measurements)

The measured values of the metering function are listed in the table below.

Table 2-2 The measured analogue values of the metering function

MEASURED VALUE	DIMENSION	EXPLANATION
Demand P	kWh	Demand P. Unit prefix can be kilo- or mega-, depends on the configuration
Supply P	kWh	Supply P. Unit prefix can be kilo- or mega-, depends on the configuration
Demand Q	kVAh	Demand Q. Unit prefix can be kilo- or mega-, depends on the configuration
Supply Q	kVAh	Supply Q. Unit prefix can be kilo- or mega-, depends on the configuration

3.3.6.2.2.3. Binary input signals (graphed output statuses)

The conditions of the binary inputs are defined by the user, applying the graphic equation editor (*Logic Editor*). Parts written in **bold** are seen on the left side function block in the Logic editor.

Table 2-3 The binary input signal of the metering function

BINARY OUTPUT SIGNAL	EXPLANATION
MTR_Reset_GrO_	Reset input of the function has meaning only in cumulation mode
MTR_ImpDemP_GrO_	Demand P impulse of external energy meter input of the function has meaning only in impulse input mode
MTR_ImpSupP_GrO_	Supply P impulse of external energy meter input of the function has meaning only in impulse input mode
MTR_ImpDemQ_GrO_	Demand Q impulse of external energy meter input of the function has meaning only in impulse input mode
MTR_ImpSupQ_GrO_	Supply Q impulse of external energy meter input of the function has meaning only in impulse input mode

3.3.6.2.2.4. Events

The following events are generated in the event list, as well as sent to the SCADA according to the configuration.

Table 2-4 Generated events of the metering function

EVENT	DIMENSION	EXPLANATION
Demand P	Wh	Demand P value
Supply P	Wh	Supply P value
Demand Q	VArh	Demand Q value
Supply Q	VArh	Supply Q value

3.3.6.2.3. Technical data

Table 2-5 Technical data of the metering function

FUNCTION	RANGE	ACCURACY
Power accuracy	$I > 15\%In$	$\pm 3\%$

3.3.6.2.4. Notes for testing

Time period of the accumulation is defined by parameter setting.

Starting accumulation is based on the integrated real-time clock of the device.

For example, for a “Time Interval” setting of 15min, the trigger is: at 0h0min, 0h15min, 0h30min, 0h45 min, 1h0min, etc.

Parameter changing resets the accumulation. Using the settings of the example above, setting new parameters at 0h07min will result in the following:

- the accumulated values are reset to zero,
- the new accumulation starts at 0h15min,
- the first report is sent at 0h30min. Measured values in Events list will also refresh at 0h30min.

3.3.6.2.5. 61850 LN

Instance number of Logical Node is not mentioned in the table below.

Table 2-6 Logical Node and Data Objects of the metering function

LN NAME	DO NAME	DA NAME	FC	EXPLANATION
EMMTR	DmdVArhPV	mag.f	MX	<i>Demand VArh value</i>
		q	MX	<i>quality</i>
		t	MX	<i>timestamp</i>
	DmdWhPV	mag.f	MX	<i>Demand Wh value</i>
		q	MX	<i>quality</i>
		t	MX	<i>timestamp</i>
	SupVArhPV	mag.f	MX	<i>Supply VArh value</i>
		q	MX	<i>quality</i>
		t	MX	<i>timestamp</i>
	SupWhPV	mag.f	MX	<i>Supply Wh value</i>
		q	MX	<i>quality</i>
		t	MX	<i>timestamp</i>

3.3.7. Voltage selection function block

3.3.7.1. Application

In several substation configurations with double busbar, there is no voltage measurement in the bays, but voltage transformers are connected to the busbars only.

If the protection functions configured in the bay devices apply voltage measurement then the correct selection of the voltage sources is needed. The role of the voltage selection is that the protection functions get the voltage of the busbar section to which the feeder or the transformer is connected.

To solve this problem the device gets both three-phase voltages of both busbar sections, and a binary signal decides which one is valid for the protection function.

The “Voltage selection” function block assigns the correct voltages to the protection functions.

3.3.7.2. Mode of operation

The voltage selection is decided by a binary signal. **The conditions are defined by the user applying the graphic equation editor.**

If this input signal is FALSE then the voltages of the voltage input module configured as default input are assigned to the protection functions.

If however this input signal is TRUE then the voltages of the other voltage input module are assigned to the protection functions.

3.3.7.3. The binary status signals

The voltage selection function block has a binary input signal. **The conditions are defined by the user applying the graphic equation editor.**

The **binary input status signal** of the voltage selection function block is shown in Table 1-1.

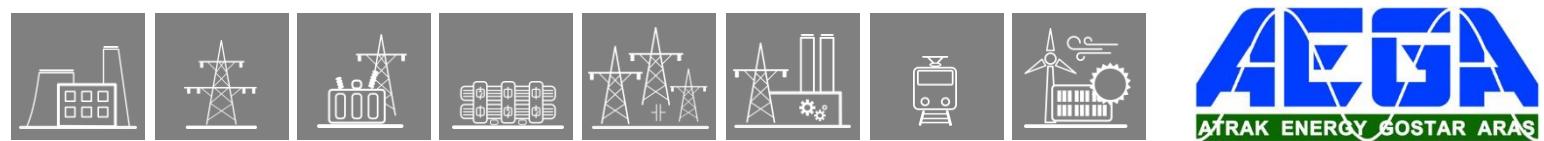

Binary status signal	Title	Explanation
SelectVolt_USelect_GrO_	USelect	Binary signal controlling the voltage selection

Table 1-1 The binary input status signal of the voltage selection function block

The **binary output status signals** of the voltage selection function block.
The voltage selection function block has no binary output status signals.

3.3.7.4. The parameters

The voltage selection function block has no parameters.

3.3.7.5. The symbol of the function block in the graphic editor

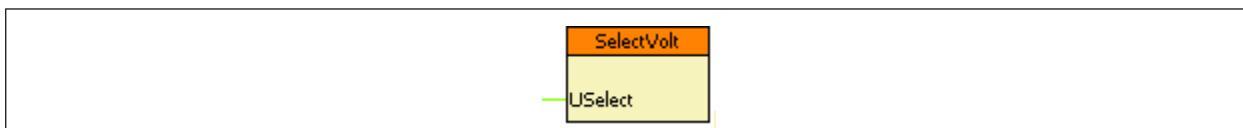


Figure 1-1 The function block of the voltage selection function block

The name of the input signal is a part of the “Binary status signal” name shown in Table 1-1.

3.3.7.6. Example

In this simple example the channel No.1 of the binary input module in position “F” is used as the signal controlling the selection.

If this input signal is FALSE then the voltages of the voltage input module configured as default input are assigned to the protection functions.

If however this input signal is TRUE then the voltages of the other voltage input module are assigned to the protection functions.

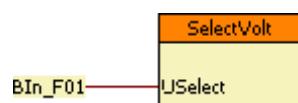


Figure 2-1 Example The simple application of the voltage selection function block

3.3.8. Trip Value Recorder

3.3.8.1. Application

For quick evaluating of network faults, it is very useful to see in the event list of the protection device the measured primary analog values (currents, voltages) before and during the fault state. The Trip value recorder function serves this purpose.

This function is not a default element of any configuration, but it can be acquired (please contact Protecta Support team).

3.3.8.1.1. The measurement

The input values of the EuroProt+ devices are the secondary signals of the voltage transformers and those of the current transformers.

These signals are pre-processed by the “Voltage transformer input” function block and by the “Current transformer input” function block. These function blocks are described in separate documents. The pre-processed values include the Fourier basic harmonic phasors of the voltages and currents and the true RMS values. Additionally, it is in these function blocks that parameters are set concerning the voltage ratio of the primary voltage transformers and current ratio of the current transformers.

Based on the pre-processed analogue signals, several function blocks perform additional calculation, e.g.: active and reactive power, frequency, temperature, impedances, higher harmonics, symmetrical components, etc.

The Trip value recorder function calculates the primary values from its three input secondary signals (currents or voltages) and uses them as described in the following chapter.

3.3.8.1.2. Operation principles

The Trip value recorder has two binary inputs: “Start” and “Trip”.

When the “Start” binary input receives a rising edge signal, the function stores the prefault value of the three analogue signals and the fault value of the three analogue signal as well and the function starts waiting for the trigger (Trip) signal. If no trigger signal coming and new start signal receives the stored prefault and fault values will be overwritten by the latest ones.

The “Trip” binary input of the function is applied for triggering the trip value recording to generate the events with the prefault and fault values.

After triggering the function, so the “Trip” binary input is activated, the function generates the following values in the event list and sends them automatically to the SCADA system:

- prefault values of the three analog signals 100 ms before the Start signal receives,
- fault values of the three analog signals: average of the values 10 ms and 20 ms after the Start.

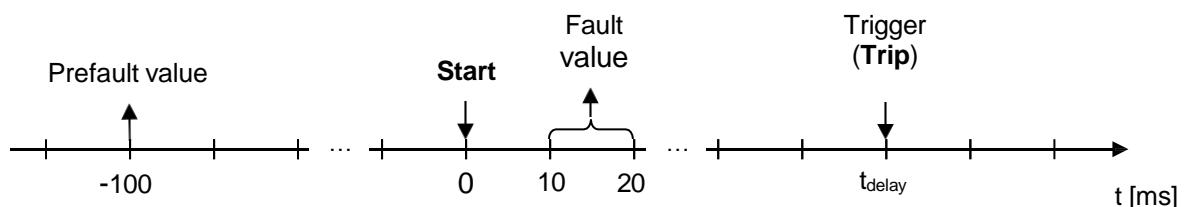
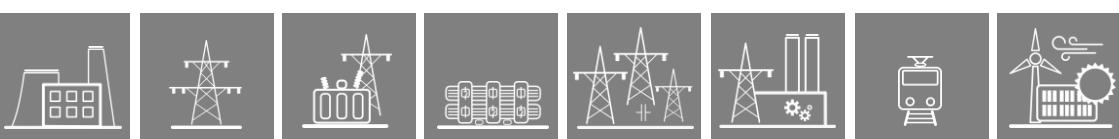



Figure 1-1 Time diagram of the trip recording behaviour

3.3.8.2. Trip value recorder function overview

The graphic appearance of the function block of the trip value recorder function is shown below. The block shows all binary input and output status signals which are applicable in the graphic equation editor.

Usually, the collected general start signal of the protection functions is assigned to the "Start" input and the general trip signal of trip logic function is connected to the "Trip" input.

Figure 2-1 Graphic appearance of the function block of the trip value recorder function

3.3.8.2.1. Settings

3.3.8.2.1.1. Parameters

The Trip value recorder function does not have any parameters.

3.3.8.2.2. Function I/O

This section describes briefly the analogue and digital inputs and outputs of the function block.

3.3.8.2.2.1. Analogue inputs

The function uses the sampled values of a current input or voltage input. Moreover, calculated analogue signals i.e.: symmetrical values, differential/bias current values can be used as inputs.

The following table contains the available input channels of the trip value recorder function.

Table 2-1 Available analogue inputs of the trip value recorder function

ANALOGUE INPUTS	RELATED FUNCTION BLOCK
Phase current, phase-to-phase, symmetrical, residual currents	CT4, CalcCurr
Voltage in phase, phase-to-phase, and symmetrical; Reference (busbar) voltages	VT4, CalcVolt
Calculated Idiff/Ibias current of transformer differential protection	DIF87T
Calculated Idiff/Ibias current of busbar differential protection for each bus section	DIF87B

NOTE: Displaying the fault current values of the line differential protection Idiff/Ibias current and the restricted earth fault protection Idiff/Ibias current are integrated into the protection function, thus not need additional trip value functions to display the trip values.

3.3.8.2.2.2. Binary input signals (graphed output statuses)

The conditions of the binary inputs are defined by the user, applying the graphic equation editor (*Logic Editor*). Parts written in **bold** are seen on the left side function block in the Logic editor.

Table 2-2 The binary input signal of the trip value recorder function

BINARY OUTPUT SIGNAL	EXPLANATION
TRE_Start_GrO_	Dedicated input of the function to receive the start signal of the selected protection functions
TRE_Trip_GrO_	Dedicated input of the function to receive the trip signal of the selected protection functions

3.3.8.2.2.3. Binary output signals (graphed input statuses)

The Trip value recorder function does not have any binary output signals.

3.3.8.2.2.4. Online data

No default visible values on the *online data* page.

3.3.8.2.2.5. Events

The following events are generated in the event list, as well as sent to the SCADA according to the configuration.

Table 2-3 Generated events of the trip value recorder function

EVENT	VALUE	EXPLANATION
... Prefault*	according to the applied input	Prefault value of the applied signal
... Fault*	according to the applied input	Fault value of the applied signal

**The event text may vary according to the actual device configuration (.epcs)*

3.3.9. RTD temperature input function

3.3.9.1. Application of the RTD input

If the factory configuration includes an RTD temperature input hardware module, the temperature input function block is automatically configured among the software function blocks. Separate temperature input function blocks are assigned to each temperature input hardware module.

The RTD+1100 temperature input hardware module is equipped with four special input channels, the RTD+ 0200 has a single channel only. (See EuroProt+ hardware description document.) To each channel, a temperature sensor can be connected. The temperature is measured as the resistance value of the sensor, which depends upon the temperature.

The sensors can be connected by wiring methods, shown in Figure 1–1, Figure 1–2 and Figure 1–3. The connection mode is identified also by parameter setting.

Figure 1-1 2-wire RTD wiring

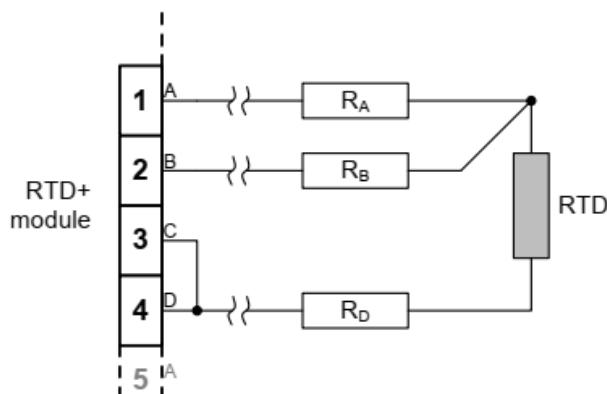


Figure 1-2 3-wire RTD wiring

When 3-wire connection is applied, it is supposed that $R_A=R_D$.

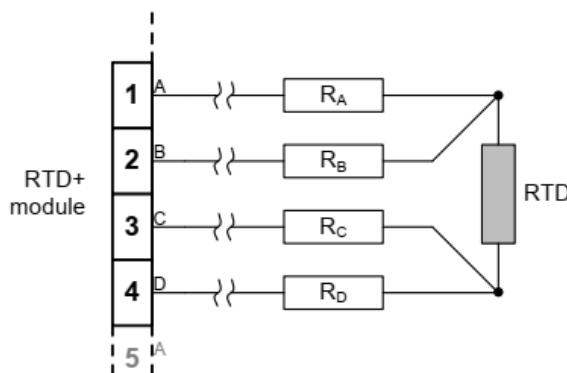


Figure 1-3 4-wire RTD wiring

The channels of the module are independent of each other. To each channel a dedicated measuring module is assigned. These measuring modules are described in a separate document: **“GGIORTD temperature measurement module function block description”**. The module is prepared to connect the following types of sensors:

- Pt100/Ni100
- Ni120/Ni120US
- Pt250/Ni250
- Pt1000/Ni1000
- Cu10
- Service-Ohm ($60\ \Omega \dots 1.6\ k\Omega$)

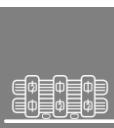
The applied type of sensors define the conversion mode from measured resistance to temperature. These are selected by parameters of the temperature measuring module. See separate document: **“GGIORTD temperature measurement module function block description”**.

3.3.9.2. Technical summary

3.3.9.2.1. Technical data

The technical data of the temperature input module are related to the hardware module. This is described in the document "**EuroProt+ Hardware description**", Chapter 10: RTD input module".

3.3.9.2.2. Summary of the parameters


The parameters of the temperature input function are explained in the following table.

Enumerated parameters

Parameter name	Title	Selection range	Default
Connection mode of Channel 1			
RTD_Ch1RangeOfMAn03_EPar_	Channel 01	3wire, 4wire, 2wire	3wire
Connection mode of Channel 2			
RTD_Ch2Range2OfMAn03_EPar_	Channel 02	3wire, 4wire, 2wire	3wire
Connection mode of Channel 3			
RTD_Ch3RangeOfMAn04_EPar_	Channel 03	3wire, 4wire, 2wire	3wire
Connection mode of Channel 4			
RTD_Ch4Range2OfMAn04_EPar_	Channel 04	3wire, 4wire, 2wire	3wire

Table 1-1 The enumerated parameters of the voltage input function

NOTE: The function block has no input and output binary signals, the graphic logic editor does not show this function block.

3.4. Disturbance recorder function

3.4.1. Operation principle

The disturbance recorder function can record analog signals and binary status signals. These signals are configured using the EuroCAP software tool.

The disturbance recorder function has a binary input signal, which serves the purpose of starting the function. **The conditions of starting are defined by the user, applying the graphic equation editor.** The disturbance recorder function keeps on recording during the active state of this signal, but the total recording time is limited by the timer parameter setting.

The pre-fault time, max recording time and post-fault time can be defined by parameters.

3.4.1.1. Mode of recording

If the triggering conditions defined by the user - using the graphic equation editor – are satisfied and the function is enabled by parameter setting, then the disturbance recorder starts recording the sampled values of configured analog signals and binary signals.

The analog signals can be sampled values (voltages and currents) received via input modules or they can be calculated analog values (such as negative sequence components, etc.)

The number of the configured binary signals for recording is limited to 64, and up to 32 analog channels can be recorded.

Depending on the type of the CPU module it has 64 or 128 MB memory. The available memory for disturbance records is 12 MB which is reserved from the whole 64 or 128 MB memory of the CPU module. The disturbance records are stored in the non-volatile flash memory and because of it the disturbance records remain in this memory after IED restarts, they will not be deleted.

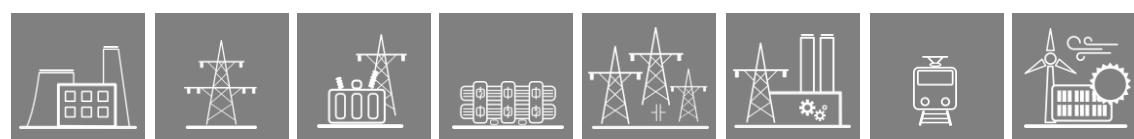
There are two function blocks available. The first function (**DRE**) applies 20 sampling in a network period. Accordingly for 50 Hz, the sampling frequency is 1 kHz. (For 60 Hz the sampling frequency is 1.2 kHz). This is used in all configurations by default.

The second function (**DRE2**) is capable to be set by parameter to apply 20 or 40 sampling in a network period. This way accordingly for 50 Hz, the sampling frequency is 1 kHz or 2 kHz (and for 60 Hz the sampling frequency is 1.2 kHz or 2.4 kHz). *Except for this, the two function blocks are the same.*

The sizes of each record may vary depending on the number of the recorded signals and the length of the record. One analog channel takes up about 7 kB and a binary channel 2 kB. Using the following formula, the memory size can be estimated:

Memory size of a record = (n*7 kB + m*2 kB) *record duration(seconds),
where n and m are the number of analog and binary channels, respectively.

As an example, for 50 Hz, if the duration of the record is 2000 ms (= 2 sec) and there are 4 current channels (4 analogue channels, n = 4) and 10 binary channels (m = 10), the size of the record is:


$$(4*7 + 10*2)*1 = (28+20)*2 = 96 kB$$

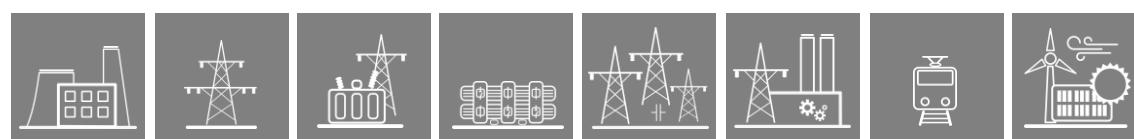
During the operation of the function, the pre-fault signals are preserved for the time duration as defined by the parameter "PreFault".

The recording duration is limited by the parameter "Max Recording Time" but if the triggering signal resets earlier, this section is shorter.

The post-fault signals are preserved for the time duration as defined by the parameter "PostFault".

During or after the running of the recording, the triggering condition must be reset for a new recording procedure to start.

3.4.1.2. Format of recording


The records are stored in standard COMTRADE (C37.111-1999) format.

- The configuration is defined by the file .cfg,
- The data are stored in the file .dat,
- Plain text comments can be written in the file .inf.

3.4.1.3. Downloading and evaluating the disturbance records

The procedure for downloading the records is described in detail in the EuroProt+ manual “Remote user interface description”, Chapter 4.7. The three files are zipped in a file .zip. This procedure assures that the three component files (.cfg, .dat and .inf) are stored in the same location.

The evaluation can be performed using any COMTRADE evaluator software. Protecta offers the “srEval” software for this purpose. The application of this software is described in detail in the “srEval manual”. This manual can be downloaded from the following Internet address: http://www.softreal.hu/product/sreval_en.shtml.

3.4.2. Disturbance recorder function overview

The two function blocks of the disturbance recorder function are shown in Figure 2-1. The block shows the binary input status signal, which serves the purpose of triggering the record. It is defined by the user in the graphic equation editor.

Figure 2-1 The function block of the disturbance recorder function

3.4.2.1. Settings

3.4.2.1.1. Parameters

Table 2-1 Parameters of the disturbance recorder function

TITLE	DIM	RANGE	STEP	DEFAULT	EXPLANATION
Operation	-	Off, On	-	Off	Parameter for activation
Resolution	kHz	1/1.2, 2/2.4	-	1/1.2	Sampling rate selection
PreFault	msec	100 - 1000	1	200	Pre-fault time
PostFault	msec	100 - 1000	1	200	Post-fault time
Max Recording Time	msec	500 - 10000	1	1000	Overall-fault time limit

NOTE: The device goes automatically in "Warning" state and sends a warning message (see Figure 2-2) if the sum of the pre-fault time and post-fault time is longer than the overall-fault time. The corresponding message in the RDSP log file is: „Wrong DR settings. PreFault + PostFault must be less than MaxFault. Check the parameters.”

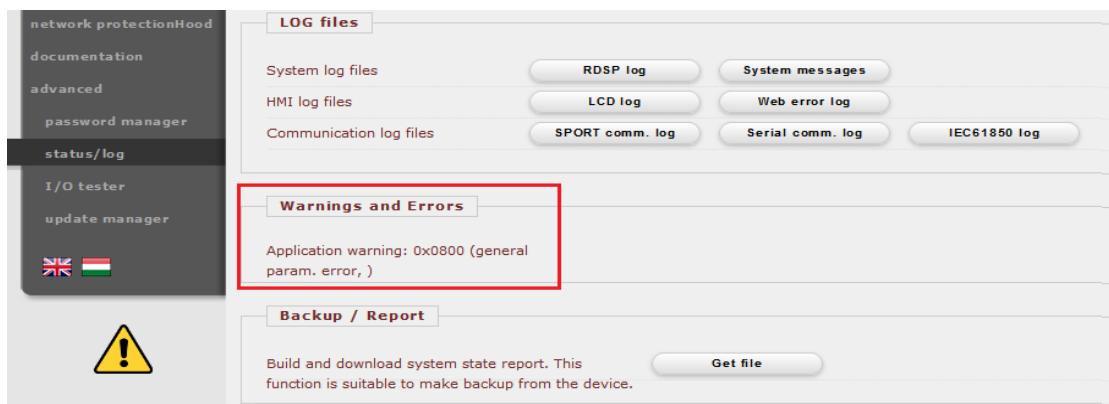
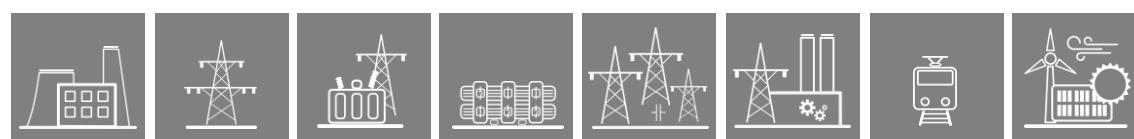



Figure 2-2 Warning message if the settings are invalid

3.4.2.2. Function I/O

This section describes briefly the analogue and digital inputs and outputs of the function block.

3.4.2.2.1. Analogue inputs

The function doesn't use analogue inputs.

3.4.2.2.2. Binary output signals (graphed input statuses)

This function block doesn't have binary output signal.

3.4.2.2.3. Binary input signals (graphed output statuses)

The disturbance recorder function has a binary input signal, which serves the purpose of starting the function. **The conditions of starting are defined by the user, applying the graphic equation editor.**

The recording is performed if the function is enabled by the parameter setting AND the triggering condition as defined by the user is "True" as well.

Table 2-2 The binary input status signals of the disturbance recorder function

BINARY INPUT SIGNAL	EXPLANATION
DRE_Start_GrO_	Output status of a graphic equation defined by the user to start the disturbance recorder function.

3.4.2.2.4. On-line data

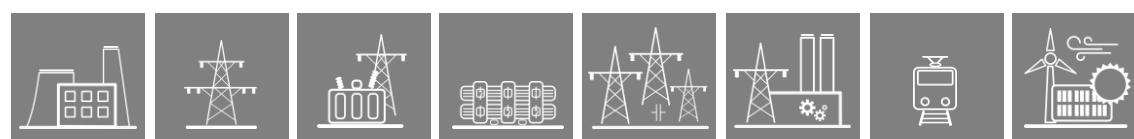

Visible values on the on-line data page:

Table 2-3 On-line data of the disturbance recorder function

SIGNAL TITLE	DIMENSION	EXPLANATION
DR Start	-	If the disturbance recorder starts, this signal becomes on

3.4.2.2.5. Events

No events belong to this function block.

3.4.2.3. The recorded signals

The analog and binary signals to be recorded are configured using the EuroCAP software tool in the menu item “Software configuration/Disturbance recorder”. (The access level of the user must be at least “Master”.) The application of this software is described in detail in the EuroCAP manual.

3.4.2.3.1. Notes for testing

During special tests such as characteristic tests depending on the test method it could occur that due to frequently repeated starting of disturbance recorder leads to the stop of the function. After this kind of stops some test cases will not be recorded by the disturbance recorder. It is not a fault of the function or IED it is only the result of not well constructed test environment or not properly configured IED. Take this phenomenon into consideration before creating a test environment and prepare the configuration of the IED.

3.4.2.4. 61850 LN

Instance number of Logical Node is not mentioned in the table below.

Table 2-4 Logical Node and Data Objects of the metering function

LN NAME	DO NAME	DA NAME	FC	EXPLANATION
DRDRE	RcdMade	stVal	ST	<i>A new record made in the IED</i>
		q	ST	<i>quality</i>
		t	ST	<i>timestamp</i>
	FltNum	stVal	ST	<i>Fault number is the number of recorded COMTRADE file</i>
		q	ST	<i>quality</i>
		t	ST	<i>timestamp</i>

3.5. Event recorder

The events of the device and those of the protection functions are recorded with a time stamp of 1 ms time resolution. This information with indication of the generating function can be checked on the touch-screen of the device in the “Events” page, or using an Internet browser of a connected computer

4. Maintenance guide for EuroProt+ devices

4.1. Foreword

The EuroProt+ devices are designed with the most up-to-date and durable components available, to keep appliances in continuous operation for decades. For this range, the only type of components that can age and lead to equipment failure are the power supply capacitors. Therefore, this document, in addition to suggesting some general steps for planned inspections, contains important information on the inspection of power supply modules.

4.2. Safety precautions

The EP+ protection-family, depending on the type, operates at dangerous power supply voltages (220 VDC, 230 VAC, 60 VDC, 48 VDC).

In all cases where the connections of the appliance are to be installed or opened, the work must be carried out by a suitably qualified person.

In all cases, the first step of activity should be to switch off the power

The EuroProt+ protection family has a high operating internal temperature. Operations carried out immediately after operation may lead to dangerous burns.

The hardware and software of the EP+ protection family form a complex system. Setting, modifying, and mounting the individual components may severely affect the operation of the whole system.

In all cases where the device is to be operated or maintained, the activity must be carried out by qualified personnel only

4.2.1. General guidelines for a scheduled maintenance of EP+ devices

1. As a first step, it is recommended to send an email attaching a report.zip file to the Protecta Application Department on the email address application@protecta.hu. In the report file, the logs contain information that can indicate abnormal operation of a module before it causes an operational fault. Based on this information, Protecta can make recommendations for the replacement or repair of the modules concerned.

The report.zip file can be downloaded from the device's web interface, in the Backup / Report section of the Advanced / Status / Log menu, by pressing the "Get file" button. Attention! The file size should be about 700kB. If the downloaded file size is significantly smaller than this, please try again or contact Protecta's Application Department via our web-based support system (<https://support.protecta.hu/?language=English>)!

2. It is usually recommended to update the firmware of the devices during scheduled maintenance. Information about the new firmware releases can be found in the [Release Notes on the Protecta homepage](#). The information here can be used to consider upgrading the basic software for a single device, or all devices in a substation.

Before starting the upgrade, always contact the Protecta Application Department or submit a ticket in the web-based support system from the following link: <https://support.protecta.hu/>

For more details on the firmware update, please refer to Chapter 4.2.10.4 of the [EuroProt+ Operating Manual](#).

4.3. Power supply maintenance

Power supplies are designed with the longest possible life electrolytic capacitors. Their expected lifetime depends significantly on the environmental conditions of the device. During a scheduled inspection, we recommend visual inspection of the power supply for any abnormalities in the capacitors. The most common phenomena are: bloating, electrolyte leakage, discoloration, which typically occurs on capacitors, but can also occur on the surface of the PCB board due to leakage. In case of abnormality, the capacitors should be replaced. In such a case, please contact Protecta's Application Department via our support page (<https://support.protecta.hu/>)!

The following figures illustrate the different capacitor states in several photos.

Figure 4-1 The capacitor on the right is already discolored

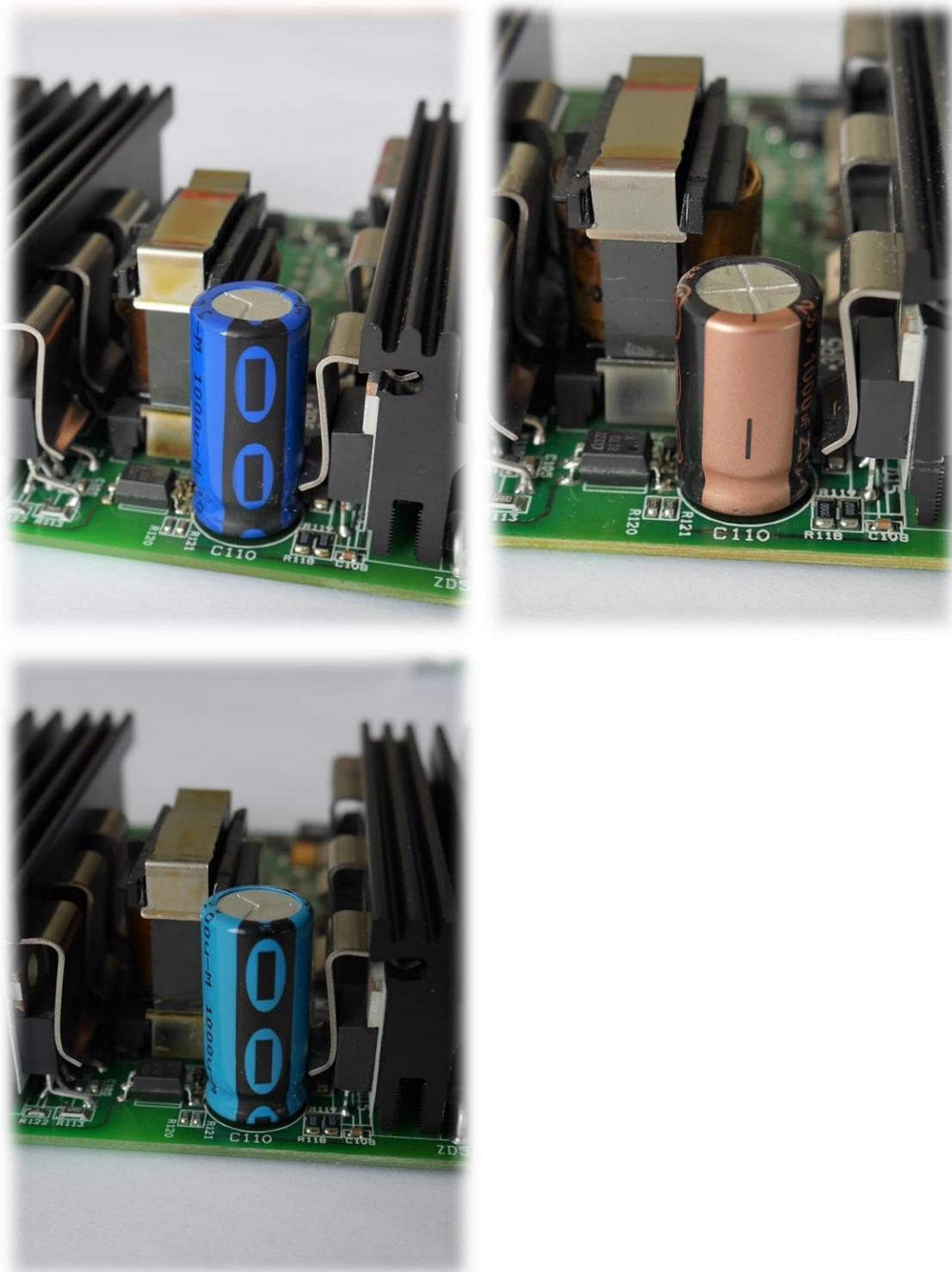
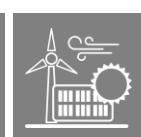
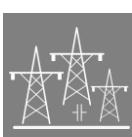




Figure 4-2 Healthy capacitors on visual inspection

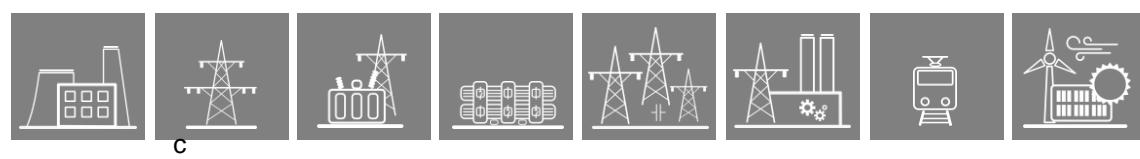
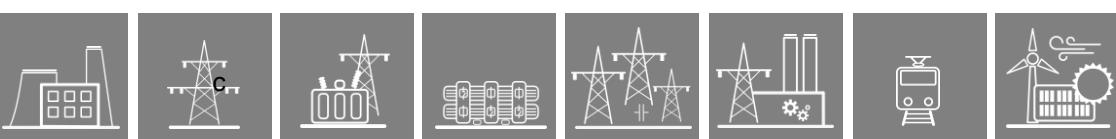



figure 4-3 Faulty capacitances on visual inspection. The discoloration compared to the original blue color is clearly visible, bloating can be seen on 2 of them

4.4. Elements and Batteries

Az EuroProt+ protection family devices do not contain either a single-use battery or a rechargeable battery.

5. TRIP contact assignment

The outputs of the “trip logic functions” are connected directly to the contacts of the PSTP+/2101 module in position “A”.

Binary status signal	Title	Connected to the contact PSTP+/2101 module in position “A”
TRC94_GenTr_Grl_	General Trip	Trip

Table 41 The connected signal of the phase-selective trip logic function

To the inputs of the “phase-selective trip logic function” some signals are assigned during factory configuration, some signals however depend on the programming by the user. **The conditions are defined by the user applying the graphic equation editor.** The factory defined inputs and the user defined inputs are in “OR” relationship.

The factory defined signals are listed in Table 42.

Input	Binary status signal	Explanation
Trip	-	-
Block	n.a.	Blocking the outputs of the trip logic function
Ext Open	n.a.	External open command

Table 42 The factory defined binary input signals of the trip logic function

The user defined signals are listed in Table 43.

Input	Binary status signal	Explanation
Trip	TOC51_GenTr_Grl_1 OR TOC51_GenTr_Grl_2 OR TOC51N_GenTr_Grl_1 OR TOC51N_GenTr_Grl_2 OR TUC37_GenTr_Grl_ OR CapUnB_GenTr_Grl_ OR TOC37_GenTr_Grl_ OR *TUV27_GenTr_Grl_11 OR *TUV27_GenTr_Grl_1 OR *TOV59_GenTr_Grl_2 OR	General trip command of the overcurrent protection function for the low setting stage OR General trip command of the overcurrent protection function for the high setting stage OR General trip command of the residual overcurrent protection function for the low setting OR General trip command of the residual overcurrent protection function for the high setting stage OR General trip command of the loss of load (undervoltage) protection function OR General trip command of the capacitor unbalance protection function OR General trip command of the undervoltage protection function for the low setting stage OR General trip command of undervoltage protection function for the high setting stage OR General trip command of overvoltage protection function for the low setting stage OR General trip command of overvoltage protection

	*TOV59_GenTr_Grl_22 OR TOV59N_GenTr_Grl_1 OR *TOV59N_GenTr_Grl_2	function for the high setting stage OR General trip command of res. overvoltage protection function for the low setting stage OR General trip command of res. overvoltage protection function for the high setting stage
Block	TRC94_Blk_GrO_	Blocking for the primary side
Ext Open	TRC94_ExtOpen_GrO	External open command for the primary side

Table 43 The user defined binary input signals of the phase-selective trip logic function

6. LED assignment

On the front panel of the device there are “User LED”-s with the “Changeable LED description label” (See the document **“Quick start guide to the devices of the EuroProt+ product line”**). Some LED-s are factory assigned, some are free to be defined by the user. The following table shows the LED assignment of the E10-Feeder configuration.

LED	Explanation
General Trip	Trip command generated by the TRC94 function
OC Trip Low	Trip command generated by the low setting stage phase overcurrent protection functions
OC Trip High	Trip command generated by the high setting stage phase overcurrent protection functions
OCN Trip	Trip command generated by the residual overcurrent protection functions for the both of branches
CapUn Trip	Trip command of the capacitor unbalance protection function
UC Trip	Trip command of the loss of load (undercurrent) protection function
LED7	Free LED
*OV Trip Low	Trip command generated by the low setting stage overvoltage protection functions
*OV Trip High	Trip command generated by the high setting stage overvoltage protection functions
*UV Trip Low	Trip command generated by the low setting stage undervoltage protection functions
*UV Trip High	Trip command generated by the high setting stage undervoltage protection functions
*OVN Trip Low	Trip command generated by the low setting stage res. undervoltage protection functions
*OVN Trip High	Trip command generated by the high setting stage res. undervoltage protection functions
LED15	Free LED
LED16	Free LED

Table 44 The LED assignment